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Abstract

Toward the realization of a universal topological quantum computation (TQC) new methods

have been developed to explore chiral superconductors in their topological phase, or topological

superconductors. Vortex defects in 2D spinless chiral p-wave superfluid bind Majorana zero modes

(MZMs) that endow these defects with non-Abelian exchange statistics. This property could be

used to perform unitary transformations in the ground state manifold of the superconductor, which

may then find applications in fault-tolerant quantum computation. Motivated by this potential, we

developed an effective, low-energy theory for vortices in two-dimensional p-wave superfluids. In

our derivation we used a single-valued gauge transformation that manifestly preserved the particle-

hole symmetry of the action. Our theory reproduces the known physics of vortex dynamics such

as the Magnus force proportional to the superconductor density. Moreover, the theory incorporates

both complete and partial Chern-Simons terms. The former predicts a universal Abelian phase,

exp(iπ/8), associated with the exchange of two vortices. However, the phase has non-universal

corrections attributed to the partial Chern-Simon term that are screened in charged superfluids.

Several types of systems exist in which the exchange of MZMsmay be practically implemented.

Arguably, the most relevant system is the topological Josephson junction as it is a relatively

straightforward matter to experimentally control the motion of Josephson vortices. It has been

previously suggested that Josephson vortices in topological Josephson junctions (TJJ) constitute

such MZMs and retain the exchange statistics of bulk vortices. In this thesis we propose an

effective Hamiltonian describing the collective motion of a phase soliton within a Josephson

junction separating two topological superconductors. Then we derive the equations of motion for

the soliton trapped in an annular Josephson junction and calculate the universal phase accumulated

as it encircles the junction. We find that the universal phase depends on the parity of the number of

vortices enclosed by the junction, then demonstrate that the presence of this phase can be measured

through its effect on the junction’s voltage characteristics.



A necessary step toward the long-term goal of storing and manipulating quantum information

in a Hilbert space spanned by MZMs bound to vortex cores is to understand and characterize

the vortices’ electronic properties. With this objective in mind, we present a framework that

incorporates (a) a general construction for the phase of a complex order parameter capable of

encoding any configuration of vortex defects residing on a flat torus or cylinder and (b) a gauge

for the vector potential, dubbed “the almost anti-symmetric gauge," that allows, in a system with

periodic boundary conditions, access to the highest resolution for its magnetic field dependence. We

use this framework together with Bloch’s theorem to solve a tight-binding Bogoliubov-de Gennes

Hamiltonian for an infinite two-dimensional vortex lattice in a chiral p-wave superconductor. This,

in turn, allows us to access the dispersion of quasi-particle states and study the formation of

Caroli-de Gennes-Matricon states and sub-gap bands induced by tunneling between vortices. In

addition, we generalize the Streda formula to account for the charge response, cxy of a chiral p-wave

superconductor. We show that cxy is a sum of two contributions, one which is non-universal and

the other equals κ/8π, where κ is the Chern number of the superconductor.

Keywords: Topological superconductors, Topological superfluids, Annular Josephson junc-

tion, Effective low energy theory, Chern-Simons term, Vortex defects, Abelian exchange phase,

Topological spin
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Chapter 1

Introduction

1.1 Overview

Chiral superconductors constitute a class of unconventional superconductors in which Cooper

pairs spontaneously develop an angular momentum. They superconductors attract attention in part

because, in their topological phase, they may host Majorana zero modes (MZMs). These MZMs

exhibit a number of intriguing physical properties that can be exploited to encode and manipulate

quantum information in such a way that is robust to decoherence[1]. Another of their unique

properties is the existence of surface currents, carried both by edge modes and by bulk states near

the surface[2]. Although the edge currents are not quantized, the edge states can give rise to a

quantized thermal Hall conductance[3, 4, 5]. Another striking phenomena that can occur in triplet

chiral superconductors is the nucleation of half-quantumvortices that carry half the superconducting

magnetic flux quantum[4, 6].

The purpose of this research is to explore the fundamental properties of vortices in topological

superconductors, calculate geometric phases that accompany a adiabatic exchange of vortices,

suggest experiments by which to measure these phases, and formulate using Pfaffian algebra the

Berry theorem for paired states.
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The distinctive features of chiral superconductivity may be found in the p-wave superconductor

in a spinless one-band setting. Therefore we begin by deriving an effective action of this model

that accounts for vortices, the same vortices that have recently attracted considerable interest for

their trapping of MZMs. It is only when superconducting vortices bind MZMs that, by virtue

of the properties of the superconductor, the composite object of the vortex and MZM satisfies

non-Abelian exchange statistics and can be employed as building blocks for TQC. The field theory

we found for this chiral p-wave superconductor incorporates a partial Chern-Simons (CS) term, as

well as a complete CS term. Remarkably, the coefficient of the complete CS term is proportional

to the Chern number. While we did discover that the field associated with the complete CS term

is related to the nucleation of vortices, the physical meaning of its corresponding particle density

remains a puzzle.

Quantum computation based solely on MZMs is not universal unless it is supplemented by a

π/8-phase gate. Using the Abelian universal exchange phase for vortices, it has been argued that

such a gate can be generated[7, 8]. To this end, achieving this goal, we focused our attention on

phase solitons in annular topological Josephson junctions[9], deriving the action governing their

dynamics and extracting from the equations of motion of the action a universal quantum exchange

phase for the solitons. The phase manifests itself as a specific spectral feature, therefore carries

experimental significance. Moreover, we showed that one can induce a persistent motion of these

solitons, in turn resulting in a measurable voltage signal, by trapping them in an annular Josephson

junction and adding a vortex within the loop. This spectral feature is in sharp contrast to that of

solitons in non-topological annular Josephson junctions, which are not affected by the presence of

bulk vortices in the inner superconductor.

Finally, we investigated the structure and electronic properties of the vortex-bound states in a

spinless p-wave superconductor by using the tight-binding model. We used the Streda formula

to calculate the anomalous charge response, cxy, at the bulk, and verified that it agrees with our

field theory predictions. Surprisingly, we found that the contribution to cxy from the vortices is

quantized. We attribute this contribution to the formation of bound states as well as deduce from
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it the quantum phase of the physical system. This effect is unexpected apriorily since, according to

the field theory, the electromagnetic vector field is decoupled from the vortices. Our investigation

reveals that details of the vortex cores are required in order to account for this effect, details that

are absent in the field theoretical formulation, in which vortices are treated as point-like objects.
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1.2 Scientific Background

The TQC scheme relies on adiabatic braiding of non-Abelian anyons to generate quantum computa-

tion. Among non-Abelian anyon models, Majorana fermions are arguably the closest to realization.

The 2D , spinless chiral p-wave superconductor is the simplest model that can be used to describe

a topological superconductor. Vortices in this type of superconductor are expected to host zero-

energy, localized Majorana fermions and therefore play significant role in proposals for universal

TQC[10, 1].

The earliest theoretical investigations of p-wave superconductivity focused on ’intrinsic’ p-

wave superconductors, such as Strontium Ruthenate (Sr2RuO4) and the ν = 5/2 quantum Hall

effect (QHE), that is mappable to a p-wave superconductor by a CS transformation. The Sr2RuO4

is a highly anisotropic, layered material with three bands crossing the Fermi energy[11, 12]. In

addition, it has a weak to intermediate spin-orbit coupling that does not break the spin degeneracy of

topological surface states. Hence the Bogoliubov quasiparticles on its surface are spin-degenerate,

thus half-quantum vortices are required in order to nucleate isolated MZMs. The existence of

such vortices has not yet been established[13]. In the ν = 5/2 QHE, the controversy surrounding

the nature of its state and complexity of its effective description tends to mask clean signatures of

MZMs[14, 15], thoughmuch progress has beenmade in determining its correct ground state[16, 17].

One possibility of overcoming such issues involves the fabrication of heterostructures in which an

interface between a topological insulator and an s-wave superconductor can be mapped into a

spinless p-wave superconductor[18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Many proposals involving

the use of other materials have been made, showing that a topological insulator can essentially be

replaced by a 2D quantum well with either Zeeman or Dresselhaus coupling and Rashba spin-orbit

coupling[28, 29, 30, 31, 32, 33, 34]. Another promising route to topological superconductivity

is to deposit magnetic atoms on the surface of an s-wave superconductor with a strong spin-orbit

coupling[35, 36, 37].

MZMs have been suggested as the basis for topological quantum computing, with computational
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steps made by physically exchanging (braiding) positions of the quasiparticles, as is illustrated in

Figure 1.1. In principle, the resultant state depends only on the topology of the exchange; the

physical system is therefore argued to be robust against local perturbations. In a 2D p-wave

superconductor vortex defects bind MZMs that endow them with non-Abelian exchange statistics.

The braiding ofMZMsmay result in a unitary transformation in the space of ground-state degenerate

manifold. However, braiding operations we can only perform single-qubit rotations by an angle

π/2 in the Hilbert space, which are not rich enough to support all the gates required for a universal

quantum computer[38, 39, 40]. The Abelian statistics, attributed to the above-mentioned vortices,

can supplement the missing operation by generating the π/8-phase gate, completing a universal

gate set. This gate can be generated in a topologically protected manner by performing certain

operations that change the topology of the system [41, 42, 7]. It is therefore quite important to

formulate a cogent theory that accounts for the dynamics of vortices in p-wave superconductors.

In order to shed light on the collective response of the 2D spinless chiral p-wave supercon-

ductor to external electromagnetic fields, a low-energy effective action has been derived by the

standard gradient expansion method [43, 44, 45, 2, 46, 47]. However, in this derivation vortices

have generally been left out. It appears then that the Abelian exchange phase of vortices, while

surmised from the conformal properties of its edge states or the properties of candidate bulk wave-

functions [48, 4, 49], has never been derived from a microscopic model [50, 51]. In particular, it

has generally been accepted that its value is universal. We showed that, in standard derivations of

the action of p-wave superconductors, a crucial term that is directly responsible for this universal

exchange phase is, in fact, lacking[52].

Realization of itinerant, non-abelian quasi-particles is the much-coveted goal of a large commu-

nity of physicists exploring topological states of matter[53]. It has been suggested that Josephson

vortices in topological Josephson junctions (TJJ) would constitute such MZMs and retain the uni-

versal exchange statistics of bulk vortices[9]. In contrast to many other systems, it is a relatively

straightforward matter to allow for braiding by experimentally controlling the motion of Josephson

vortices[54, 55, 56]. This braiding process could lead to spectral signatures of non-Abelian ex-
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Figure 1.1: Braiding Majorana Fermions. The spatial and space-time trajectories of a series of

exchanges resulting complicated braid of worldlines.

change statistics. Experimental and theoretical investigations of TJJs are now in progress[57, 58].

Although the TJJs are a promising way of exchanging MZMs, our study reinforces the hypothesis

that Josephson vortices retain the exchange statistics of bulk vortices.[59].

Many aspects of vortex-Majorana lattices in a 2D chiral p-wave superconductor have been

investigated extensively [60, 61, 62, 63, 64, 65]. In addition, using the tight-binding model, the

structure of vortex-bound states in a spinless p-wave superconductor was studied[66, 67, 68, 69].

It was found that the vortex Caroli-de Gennes-Matricon (CdGM) bound states play an important

role in the accumulation of charge in the vortex core [70] as well as that vortices and anti-vortices

accumulate different charges[71, 72]. We recently showed that the anomalous charge response, cxy

is a sum of two contributions, one which is non-universal and the other equals κ
8π , where κ is the

Chern number of the superconductor. Moreover, we note that cxy is proportional to the anomalous

Hall conductivity, which in turn is proportional to the polar Kerr angle. Thus, these results should

affect calculation of the polar Kerr effect, hence they are significant for the determination of the

order parameter of superconductors. [47, 73, 74, 75, 76, 77].
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In the rest of this chapter we will introduce several key topics, including the exchange statistics

of Majorana bound states, a path-integral description of a chiral p-wave superconductor, and the

topological annular Josephson junction in the presence of a soliton. In addition, we will present

the Thouless representation of the p-wave many-body groundstate and give a formula for the Berry

phase (Abelian case) in terms of this groundstate.
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1.2.1 The exchange statistics of Majorana bound states

Finding materials that admit a topological phase is the first step in creating quantum devices

that are topologically protected, as any material must accommodate qubits for encoding quantum

information and quantum gates to manipulate them. Quantum gates may be implemented by

adiabatic, or the slow braiding, of topological defect worldlines, that end with their return to

their original positions. The braiding process transforms one ground-state to another state in the

same degenerate subspace. All braids can be built up from a finite set of elementary exchanges,

thus exchange statistics can be specified by the unitary matrices representing the effect of these

elementary exchanges on the groundstate manifold.

Up to a global phase, the non-Abelian statistics of MZMs can be inferred from the action of

braid group generators on MZM operators [38]. The action of the braid group generator Ti on

MZM operators is

Ti :




γi −→ γi+1, ;

γi+1 −→ −γi, ;

γ j −→ γ j, for j , i and j , i + 1.

(1.1)

By solving the BdG equation, these topological properties of Majorana operators were shown to

exist in p-wave superconductor ground states[78]. In its ground state each vortex defect hosts one

MZMwhich can be combined into n complex Dirac fermions, thereby giving rise to the degeneracy

of the ground state equal to 2n−1 for a fixed parity of particle number (i.e., each fermionic level may

be either filled or empty)[4, 38].

1.2.2 Path-Integral Description of a chiral p-wave superconductor

In a p-wave superconductor, those quasi-particles that exhibit non-Abelian statistics are flux h/2e

vortices [79, 80]. We would like to be able to “integrate out” the Fermionic degrees of freedom and

make a loop expansion around a ”bare” Green’s function to obtain a low-energy theory [81, 82]. In

the following we introduce the basics of path-integral theory.
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The Bogoliubov–de Gennes Hamiltonian for a spinless p-wave superconductor is [43, 2]

H =
∫
R

dt
∫
R2

dx ψ†x,t
( (p − A)2

2m
− µ − A0

)
ψx,t +

1
2

[
ψx,t

{
∆̄, px + ipy

}
ψx,t + h.c.

]
, (1.2)

where p = −i∇ is the momentum, ψ, ψ† are the electron field operators, ∆ is the order parameter

that depends on space and time ,and A(r) is the electromagnetic vector potential. From here on we

assume e = ~ = 1. The action functional corresponding to the Hamiltonian Eq. (1.2) is

S (
φ̄x,t, φx,t

)
=

∞∫
−∞

dt
∫

R2
dx

[
φ̄x,t (i∂t) φx,t −H

(
φ̄x,t, φx,t

) ]
, (1.3)

where the fermion operators appearing in Eq. (1.2), ψ†x,t and ψx,t , were replaced by Grassmann

fields, denoted by φ̄x,t and φx,t , respectively. The partition function of the system is given by the

sum over all possible Grassmann field configurations, weighted by the action functional of the

fields,

Z =
∫
D(η̄x,t, ηx,t)eiS(η̄x,t,ηx,t ). (1.4)

The action is quadratic in the Grassmann fields and the partition function can be straightfor-

wardly integrated out. We use Nambu notation

ηx,t =
©­«
φx,t

φ̄x,t

ª®¬
and η̄x,t =

(
φ̄x,t, φx,t

)
. (1.5)

Writing the action in terms of Nambu spinors gives

S (
η̄x,t, ηx,t

)
=

1
2

∞∫
−∞

dt
∫

R2
dx

[
η̄x,tG−1ηx,t

]
, where G−1 = i∂t −H (1.6)

In terms of the Pauli matrices, The inverse Green matrix in the presence of electromagnetic fields

is

G−1 = i∂t − τ3

( (p − τ3A)2
2m

− µ − A0

)
− 1

2
τ1{∆, px} − 1

2
τ2{∆, py} (1.7)
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where τi are the Pauli matrices and the order parameter is ∆ = ∆0eiτ3θ(x,t).

The functional integration over a Gaussian of real Grassmann fields is

Z =
∫
D(η̄x,t, ηx,t)eiS(η̄x,t,ηx,t ) =

∏
x,t

Pf
(
G−1

x,t

)
= exp

[
1
2
Tr log

(
G−1

x,t

)]
, (1.8)

where TrA stands for
∑

x,t 〈x, t |trA|x, t〉 and tr is the trace over the 2 × 2 Nambu space [83].

1.2.3 The topological annular Josephson junction in the presence of a soliton

In order to derive the effective Hamiltonian of the topological annular Josephson junction, we

considered the Josephson junctions described in Fig.(1.2). Josephson vortices are trapped in

insulating regions between superconductors and are solutions of the sine-Gordon equation; thus its

the order parameter is complex and its phase, in the weak coupling limit, obeys the sine-Gordon

equation. In the case of topological superconductors, such vortices can bind a localized MZM;

this despite the fact that they lack a normal core. We then linearize the corresponding Hamiltonian

for each of the edges and add a coupling term which allows for tunneling of Majoranas; the

Majorana tunneling term is found by taking the overlap between the two edge states. Only in the

case of counter-propagating Majorana edge states a localized MZM would appear in the Josephson

vortex[9].

The Hamiltonian of the topological annular Josephson junction with a moving soliton is

H =
∫

dxΨ†x HΨx, (1.9)

where Ψx = (ψx, ψ̄x)T is a spinor which consists of a periodic and an anti-periodic Majorana field

(i.e., the fields are self-adjoint), respectively. The single particle Hamiltonian is

H = τziv∂x − τyW(x, q), (1.10)

with W(x) = m(q) cos[π(x − q)/L] being the order parameter for a short Josephson vortex.

The representation of the Majorana field depends on its boundary conditions as follows

ψx =
1√
L

∑
kp

e−ikp xψkp, ψ̄x =
1√
L

∑
ka

eikaxψ̄ka, (1.11)
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Figure 1.2: Josephson junctions. Left panel: px + ipy / px + ipy junction. Right panel: px − ipy

/ px + ipy. The direction of the propagation of Majorana edge states is marked by arrows. Dotted

lines indicate electron tunneling.

where

kp(m) = 2π
L

m, ka(n) = 2π
L

(
n +

1
2

)
, m, n ∈ Z. (1.12)

The opposite signs of these exponents reflect counter-propagating Majorana edge states. For

numerical purposes we set a cutoff kp(nmin) ≤ kp ≤ kp(nmax), ka(nmin) ≤ ka ≤ ka(nmax − 1).

1.2.4 Thouless representation of the Hartree-Fock-Bogoliubov groundstate

The Hartree-Fock-Bogoliubov (HFB) groundstate can be represented as

|Ω〉 = A exp

(∑
i< j

Zi jψ
†
i ψ
†
j

)
|0〉 (1.13)

where ψi is a fermion annihilation operator satisfying ψi |0〉 = 0, Z = (VU−1)∗ is a skew-symmetric

matrix, and the columns of the block matrix (U V)T are eigenstates that correspond to positive

eigenenergies in ascending order. Moreover, A =
√
| det U | is a normalization constant, ensuring

that 〈Ω|Ω〉 = 1. This representation is known in the literature as the Thouless Representation[84,

85].
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In the construction of the HFB groundstate we assume that all positive energy single-particle

eigenstates are related to the negative ones by virtue of particle-hole symmetry, |ε〉 = τxK | −ε〉,
where K is complex a conjugate operator and τx is the first Pauli matrix in Nambu space. In the

absence of degenerate eigenstates, this relation is automatically fulfilled. However, subspaces of

degenerate eigenstates should be spanned by states that fulfill the relation. For example, in the case

of two degenerate zero-energy states, we need to construct two orthonormal states, 〈vi |v j〉 = δi, j ,

that are also particle-hole counterparts of one other, |v2〉 = τxK |v1〉.
The case of zero-modes is more complicated than that of degeneracies at higher-energies

because it is not known a priori which one of the zero-modes should participate in the many-body

groundstate. In order to choose the correct zero-mode we check that groundstate is not orthogonal

to the bare vacuum, 〈0|Ω〉 =
√
| det U | , 0. Otherwise U would be singular, resulting in an

ill-defined Thouless representation.

The overlap between two HFB groundstates is given by

〈Ω1 |Ω2〉 = A1 A2SNpfZ (1.14)

where Ai represent the normalization constants, SN = (−1)N(N+1)/2 and

Z = ©­«
Z2 −I
I −(Z1)∗

ª®¬
(1.15)

is a 2N × 2N skew-symmetric matrix with Zi =
(
ViU−1

i

)∗ and i = 1, 2.

1.2.5 The Berry phase (Abelian case)

We are primary interested in the geometric phase, or the Berry phase, accompanying an adiabatic

exchange of vortices over time t. We parametrize the process using a set R so that the Berry phase

acquires the form

γn = i
∫ t f

ti
dt 〈n(R(t′))|∇R |n(R(t′)〉 ÛR = i

∮
C

dR〈n(R)|∇R |n(R)〉. (1.16)
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The time independent wave function, |n(R)〉, is defined uniquely up to a global phase which

can be gauged. Under the gauge transformation |n(R)〉 → eiζ(R) |n(R)〉, where ζ(R) must maintain

the smoothness and the single-valueness of the wave function. Under the same transformation the

Berry vector potential An(R) is transformed as An(R) → An(R) −∇Rζ(R). Consequently, the

Berry phase will change by ∆γn = −
∮
C dR∇Rζ(R) = ζ(R(ti)) − ζ(R(t f )) = 2πm with m being an

integer. This last equality is a result of R(ti) and R(t f ), referring to the same point in the parameter

space while ζ(R) is allowed to be multivalued so long as the wave function is kept single-valued.

The Berry phase of a HFB groundstate along a closed path is γ =
∫
C dR · A(R) with

A(R) = i〈Ω|∇RΩ〉 = i
4
tr

(
(1 + Z†Z)−1(Z†Z′ − Z′†Z)

)
, (1.17)

Z = (VU−1)∗ and the columns of the block matrix (U V)T are single-particle eigenstates corre-

sponding to positive eigenenergies in ascending order[86]. For numerical purposes it is preferable

to write the Berry connection without derivatives of inverse matrices,

A(R) = i〈Φ|∇RΦ〉 = i
4
tr

[
V†V ′ − V

(
V†

)′
+

(
U†

)−1
V†V

(
U†

)′
− V†VU−1U′

]∗
. (1.18)

The complete derivation is in Appendix D.
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1.3 Short summary of the papers

(a) On the effective theory of vortices in two-dimensional spinless chiral p-wave superfluids
We calculated the Abelian exchange phase associated with the adiabatic exchange of vortices using

a microscopic model of a p-wave superconductor, determining that, in the standard derivations of

the action of p-wave superconductors, a crucial term that is directly responsible for this universal

exchange phase is lacking. By carefully sorting out the components of the theory’s gauge structure,

we showed how to produce the missing term of the CS type in the action. This allowed us to predict

the conditions under which the exchange phase will deviate from its universal value. We believe

that this new understanding will play an important role in harnessing Majorana fermions toward

universal quantum computation.

Ariad, Daniel, Eytan Grosfeld, and Babak Seradjeh. “Effective theory of vortices in two-

dimensional spinless chiral p-wave superfluids.” Physical Review B 92.3 (2015): 035136.

(b) Signatures of the topological spin of Josephson vortices in topological superconductors
Realization of non-abelian quasi-particles, known as Majorana fermions, is an ongoing challenge

for physicists exploring topological states of matter. Toward achieving this goal, we recently sug-

gested that Josephson vortices in TJJ would constitute suchMZMs and retain the exchange statistics

of bulk vortices. In order to corroborate this hypothesis, we found the universal exchange phase

of Josephson vortices by developing a procedure to calculate the Berry connection of systems

possessing particle-hole symmetry. This calculation confirmed that the Abelian phase resulting

from the exchange between a bulk vortex and a Josephson vortex is π/8. In addition, we suggested
an experiment by which to measure the presence of this phase.

Ariad, Daniel, and Eytan Grosfeld. “Signatures of the topological spin of Josephson vortices

in topological superconductors.” Physical Review B 95.16 (2017): 161401.
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(c) How vortex bound states affect the Hall conductivity of a chiral p ± ip superconductor

This work extend our understanding of the anomalous charge response, cxy of chiral supercon-

ductors. It is established that in order to correctly apply the Streda formula for calculating cxy it is

necessary to employ compact geometries that avoid edge effects. This, in turn, requires a careful

analysis of the effect of finite-radius vortex nucleation that leads to an adjustment of the Streda

formula. The modified Streda formula is then applied to calculate cxy for a px ± ipy superconductor

placed on a square lattice at zero magnetic field and zero vorticity. We show that cxy is a sum

of two contributions, one which is non-universal and the other equals κ/8π, where κ is the Chern
number of the superconductor. Moreover, we note that cxy is proportional to the anomalous Hall

conductivity, which in turn is proportional to the polar Kerr angle. Thus, these results should affect

the calculation of the polar Kerr effect, hence they are significant for the determination of the order

parameter of superconductors.
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We propose a U(1) × Z2 effective gauge theory for vortices in a px + ipy superfluid in two dimensions. The
combined gauge transformation binds U(1) and Z2 defects so that the total transformation remains single-valued
and manifestly preserves the particle-hole symmetry of the action. The Z2 gauge field introduces a complete
Chern-Simons term in addition to a partial one associated with the U(1) gauge field. The theory reproduces
the known physics of vortex dynamics such as a Magnus force proportional to the superfluid density. More
importantly, it predicts a universal Abelian phase, exp(iπ/8), upon the exchange of two vortices. This phase is
modified by nonuniversal corrections due to the partial Chern-Simon term, which are nevertheless screened in a
charged superfluid at distances that are larger than the penetration depth.

DOI: 10.1103/PhysRevB.92.035136 PACS number(s): 74.78.−w, 67.30.he, 74.20.Rp, 74.25.Uv

I. INTRODUCTION

The two-dimensional spinless chiral p-wave superfluid is
the minimal model for describing the properties of many
realizations of topological superfluids and superconductors:
topological insulator-superconductor interfaces [1–3], the lay-
ered material Sr2RuO4 [4–6], some cold atom systems [7,8],
and certain spin models admitting anyon excitations [9]. In
this model, the vortex defects of the phase of the pairing order
parameter bind Majorana zero modes that endow them with
non-Abelian exchange statistics [10–13]. Thus they have been
proposed as potential candidates for fault-tolerant, topological
quantum information processing [14–16]. In addition, they are
expected to admit a quantized Abelian exchange phase that
plays an important role in proposals for universal topological
quantum computation with vortices [17]. It is therefore quite
important to formulate a cogent theory that accounts for the
dynamics of vortices.

In previous work on this system, a low-energy effective
action has been derived by the standard gradient expansion
method [18–23], shedding light on the collective response of
the superfluid to external electromagnetic fields. However,
in this derivation vortices have been generally left out. It
appears then that the Abelian exchange phase of vortices, while
surmised from the conformal properties of its edge states or
the properties of candidate bulk wave functions [10,12,24],
has never been derived from a microscopic model [25,26].
Consequently, it remains unclear whether bulk vortices in
a chiral p-wave superfluid or superconductor exhibit this
exchange phase and, if so, to what degree it is universal or
how it is affected by the physics of the system.

To answer these questions, in this paper, we derive a
U(1) × Z2 effective gauge theory that handles vortex defects
properly. The U(1) gauge field is governed by an action that is
identical to the one previously derived by gradient expansion,
including a partial Chern-Simons (CS) term. Interestingly, a
Z2 gauge field emerges in the effective theory governed by

*grosfeld@bgu.ac.il

a new full Abelian CS term. We show that the coefficient of
the partial CS term is not a universal quantity and depends
on the details of dispersion and higher-energy behavior of
the system. The full CS term of the Z2 gauge field is, on
the other hand, a truly topological term with a quantized
coefficient. We calculate the exchange angle of two vortices
due to each CS term and show that the new CS term dictates
a universal Abelian exchange statistics phase of the vortices
equal to eiπ/8. In contrast, for neutral superfluids, the partial
CS term spoils the quantization of the exchange phase by
adding a long-distance nonuniversal correction. For charged
superfluids, screening effects exponentially diminish the latter
over the effective penetration depth. This sets a low bound
for the distance between vortices during exchange processes
required for topological quantum computation.

II. GAUGE TRANSFORMATION

We start with the action for a spinless chiral p-wave
superconductor [27], Z = ∫

D(η̄,η)eiS, where η = (φ,φ̄)ᵀ

and η̄ = (φ̄,φ) are the Nambu spinors with Grassmann
variables φ(r) and φ̄(r) in the coordinate space r = (r,t). In
the following, we will interchangeably use z ≡ t as the third
coordinate and d3r = drdt . The action is S = 1

2

∫
d3r η̄G−1η,

with G−1 = i∂t − H the inverse Green’s function matrix and
the Bogoliubov–de Gennes Hamiltonian density [28],

H =
(

ξp−A − At eiθ/2�(p)eiθ/2

e−iθ/2�(p)†e−iθ/2 −ξp+A + At

)
. (1)

Here, ξp is the dispersion of excitations above the ground state,
p = −i∇ is the momentum operator, �(p) is the amplitude
and eiθ(r,t) is the phase of the superconducting order parameter
(including vortices), and A = (A,At ) is the electromagnetic
gauge field. (In a neutral superfluid, A = 0.) We assume e =
c = � = 1. In the continuum, ξp = p2/2m − εF with εF the
Fermi energy and �(p) = v(px + ipy) with v the slope of the
pairing order parameter in momentum space.

In order to keep track of the winding number
around each vortex we define θ (r,t) = ∑n

j=1 θj (r,t), where

1098-0121/2015/92(3)/035136(7) 035136-1 ©2015 American Physical Society
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θj = arg(r − xj ) ∈ (2π
j ,2π (
j + 1)] is the phase around the
vortex located at xj (t) and 
j is its winding number. We take
the branch cut of arg(r) to be the positive real axis and index
the corresponding Riemann sheets with the branch number

 ∈ Z [29].

The partition function is invariant under a unitary transfor-
mation, U , of the inverse Green’s function with a Jacobian of
unit modulus; that is, U = eiα0eiαμτμ , where τx , τy , and τz are
Pauli matrices in the Nambu space. We demand that U respect
the particle-hole symmetric structure of the spinor fields. This
means that U must transform (η̄,η) in such a way that ensures
one spinor remains the conjugate transpose of the other and
each component of the spinor is the conjugate of the other.
The requirement is equivalent to the condition U † = τxU

ᵀτx .
In the operator language, this is the condition to maintain
the fermionic commutations relations under the Bogoliubov
transformation. One can readily show that any such U is
composed of a finite product of the following matrices:
τx, τy, eiμτz , and eiπm1, where μ ∈ R and m ∈ Z. The actual
number of distinct sequences can be reduced through use
of the commutations relations between the generators and is
ultimately finite.

To proceed further, it is convenient to gauge away the phase
of the superconducting order parameter. This will add space-
time gradients of θ (r,t) to the electromagnetic potential in the
kinetic term. A naive transformation, eiτzθ/2, which involves
only the phase of the order parameter, leads to multivaluedness
in the presence of vortices. To avoid this problem, Anderson
[30] suggested using the transformations e−i(τz∓1)θ/2, resulting
in the superfluid velocity appearing as an effective gauge field
in either the electron or the hole component of the Hamiltonian.
This gauge choice becomes possible when opposite spins are
associated with the two components of the Nambu spinor.
Franz and Tešanović [31,32] developed the transformation
ei(τz+1)θA ei(τz−1)θB for a periodic bipartite vortex lattice, where
A and B are the two sublattices. The vortices should be
assigned to the subsets in such a way that the effective magnetic
field vanishes on average. Physically, a vortex assigned to
subset A will be seen by electrons and be invisible to holes,
while vortex assigned to subset B will be seen by holes and
be invisible to electrons. Inevitably, in both transformations,
particle-hole symmetric structure of the spinors cannot be
maintained without additional constraints on the ensemble of
allowed partitions of θ .

Instead, we suggest the following transformation:

U = eiτzθ(r,t)/2eiγ (r,t), (2)

where θ is the phase function and γ = π
∑

j 
j keeps
the transformation properly single-valued by supplying the
required sign each time the winding number in θ changes as
it evolves in space and time. Our transformation is similar
in spirit to the Franz-Tešanović transformation, especially
as formulated in Ref. [33], but it manifestly preserves the
particle-hole symmetry of the action. Upon applying this gauge
transformation, two gauge fields appear in the action: the
aν = Aν − ∂νθ/2 couples only to the kinetic energy terms,
with opposite signs for particles and holes, and the bν = ∂νγ

couples minimally to momentum, both in the kinetic energy
and in the pairing term. We note that the b gauge field is
associated with the vortex branch cuts and its corresponding

current is proportional to the vortex current. After this
transformation, we find

G−1 = i∂t − bt + τzat − τμhμ(p − b,a), (3)

where the 3-vector h(p,a) = (��(p),��(p),ξp−τza).

III. EFFECTIVE ACTION

We can now integrate out the fermion fields to find
the effective action, Seff = i

2 Tr ln G, where Tr(·) stands for∫
drdt〈r,t |tr(·)|r,t〉 and “tr” is the trace over the Nambu

space. A tedious but straightforward calculation yields (see
Appendix), to second order in the gauge fields,

Seff =
∫

drdt

(
nat + ρta

2
t − ρij aiaj

− κa

8π
εtij at ∂iaj + κb

8π
ελμνbλ∂μbν

)
, (4)

where ελμν is the antisymmetric tensor and latin indices i,j

run over the spatial components. The coefficients appearing in
Eq. (4) are found in terms of g(k) ≡ h(k,0) as follows:

n = 1

8π2

∫
dk

(
1 − gz

|g|
)

, (5)

ρt = 1

16π2

∫
dk

g2
x + g2

y

|g|3 , (6)

ρij = 1

16π2

∫
dk

(
1 − gz

|g|
)

∂ki
∂kj

gz. (7)

Note that n is just the superfluid density. The coefficient of the
partial CS term for a,

κa = 1

4π

∫
εiνλgi∂kx

gν∂ky
gλ

|g|3 dk, (8)

is nonuniversal and depends on the details of the system. The
coefficient of the full CS term for b, on the other hand,

κb = 1

4π

∫
εμνλgμ∂kx

gν∂ky
gλ

|g|3 dk, (9)

is the Pontryagin charge of the field gμ(k) and is therefore
always an integer. The action in Eq. (4) is our central result.

In the continuum limit, we have ξk = k2/2m − εF and
�(k) = v(kx + iky). Calculating the coefficients in this limit,
we find the following values: n ∼ (mv)2 ln ( �

mv2 ) with � an
energy cut-off; ρt = mκ∞

a /4π ; and ρij = (n/2m)δij , which
reflects the Galilean invariance in the continuum [34]. The CS
coefficients in the continuum limit are

κ∞
a =

[
1 − 2

εF

mv2
�(−εF )

]−1

, (10)

κ∞
b = �(εF ), (11)

where � is the step function. Note that this extends the results
obtained in Refs. [20,21] to the strong pairing regime, εF < 0.

For comparison, we have also calculated these coefficients
for a system on the square lattice. In this case, ξk = 1

md2 (2 −
cos kxd − cos kyd) − εF and �(k) = v

d
(sin kxd + i sin kyd),

where d is the lattice spacing. The coefficients κ
∞,sq
a,b are
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FIG. 1. (Color online) Coefficients of the Chern-Simons terms.
The coefficients κa and κb of the partial (orange) and full (black)
Chern-Simons terms are shown for a system in the continuum (solid)
and on the square lattice (dashed) for v = m. For clarity, we show
2κb. The Fermi energy is in units of 4/(md2), the bandwidth of the
square lattice, with lattice spacing d . The exchange angles due to the
partial and full Chern-Simons terms can be obtained by multiplying
the plotted values with ∓π/16 respectively.

plotted in Fig. 1 as a function of md2εF /4. We observe
that κ

sq
b acquires the values ±1 in the topological regime

0 < εF < 4/(md2) [35] and zero otherwise. In contrast, κ∞
a

and κ
sq
a are clearly nonuniversal and vary with εF , showing

derivative discontinuities when crossing into the topological
regime. The sign change of κ

sq
a on the lattice signals a sign

reversal in the Hall response of the superconductor [21,36].

IV. VORTEX DYNAMICS AND EXCHANGE

The effective action, Eq. (4), now captures correctly the
physics of vortices. This is exemplified by the physical
significance of each term appearing in the action. The first
term gives rise to the Magnus force on a moving vortex.
To see this, note that for a moving vortex ∂tθ = −ẋ · ∇θ ,
where x(t) is the position of the vortex. So, the first term
yields − ∫

dt ẋ · AM with AM = − ∫
dr n∇θ/2. Therefore

the vortex is subject to a Lorentz-like force ẋ × BM where the
Magnus flux BM = ∇x × AM = πnẑ is proportional to the
superfluid density. The contribution from the electromagnetic
gauge field At in a superconductor vanishes due to the overall
charge neutrality of the system [37]. The second and third
terms, in conjunction with the Maxwell Lagrangian, give
rise to the usual screening of vortices through the Meissner
effect. The second term also contributes to the mass of the
vortex by generating a term

∫
dt 1

2mv ẋ2 in the action, where
mv = ∫

drρt (∇θ/2 − A)2.
The fourth and fifth terms, as we now show, carry significant

information about the dynamics of vortices. Previous work on
the effective low-energy theory of the p-wave superconductor,
using only the U(1) part of our transformation [18,20], yielded
an action similar to that of an s-wave superconductor but with
an additional partial CS term. Stone and Roy [21] attributed
this partial CS term to the existence of a Hall-like response to
external fields. They recognized that the Hall current depends
on the external field primarily through its effect in modifying
the density. Note that the partial CS term we derive here is

different from the one appearing in the literature, since in
our case ∇ × ∇θ is explicitly nonzero due to the presence
of vorticity in θ . Moreover, the full CS term derived here
is entirely absent in previous work. As we show now, both
of these terms have significant contributions to the exchange
statistics of vortices.

Vortices in chiral p-wave superconductors are known to
obey non-Abelian statistics, the mechanism behind which
relates to the Majorana zero modes localized at their cores. In
the presence of 2n vortices, the ground state of the system is 2n-
fold degenerate. This degenerate ground state is further divided
into two sectors of definite parity (−1)N = ±1, where N is
the total fermion number. The full braid statistics of vortices
can be written using three matrices: R, F , and B. Roughly
speaking, R specifies the exchange of two vortices when
their fusion outcome is known, F specifies the associativity
of the exchange among three anyons, and B = F−1RF is
the generator of the full braid group of the vortices in the
model. The possible choices of R and F are constrained by
consistency relationships. These matrices have been computed
for a chiral p-wave superconductor by Ivanov [13] and found
to be, up to an overall phase, proportional to those in the Ising
anyon model. In this model, a vortex, σ , and antivortex, σ = σ ,
fuse according to the fusion rule σ × σ = I + ψ , where
the fusion channels I and ψ are, respectively, the vacuum
(boson) and fermion. In this basis, the F -matrix is real and
is given by F = 1√

2
(σz + σx), while R = e−iχ diag(1,i). The

phase χ = π/8 is fixed in this model by consistency relations
between R and F [38]. However, without a full calculation
of χ in the chiral p-wave superconductor, one cannot make a
meaningful connection to the Ising anyon model.

Our strategy in this work is to calculate χ by performing
a monodromy, which describes a full encircling of one
vortex around the other. A general argument shows that the
monodromy in the vacuum fusion channel is R2 = e−2iχ [38].
This calculation may be done in the same ground state without
complications due to the ground-state degeneracy. In our field
theory, the monodromy is the Berry’s phase in the matrix
element of the evolution operator for the exchange of two
vortices in the even-parity ground state [39]. See Fig. 2 for
illustration.

At first sight, the Z2 nature of the b gauge field in our
effective theory seems to make the calculation of the Berry’s
phase due to the full CS term tricky. However, this situation is
similar to the situation encountered in the singular string gauge
of the more common U(1) gauge theory, in which the gauge
field is zero everywhere except on a string emanating from the
vortex. One may show that the string gauge is continuously
connected to a smooth gauge without changing the winding
numbers along the process. Therefore we can calculate the
Berry’s phase contribution of the b gauge field in the usual
way by writing b = b1 + b2, where b1 and b2 are associated
with the two vortices, and considering the cross terms between
them. Both cross terms contribute equally since, by partial
integration,

∫
ελμνb1λ∂μb2ν = ∫

ελμνb2λ∂μb1ν . Assuming for
simplicity that only vortex 2 is moving, we have ελμν∂μb1ν =
πδ(r)δλ

t , and

χb = κb

4

∫
drdt δ(r)b2t = πκb

8
, (12)
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FIG. 2. (Color online) The exchange scheme of two vortices. The
exchange path is shown in green and the branch cuts in purple. In
a charged superfluid, the magnetic field, blue, is screened by the
supercurrent, red. The calculation is simplified when the path is a
semicircle of one vortex around the other followed by two radial
displacements.

which is, as advertised, quantized in the weak pairing (topo-
logical) regime to the value π/8.

The partial CS term in (4) also contributes to the Berry’s
phase, albeit not in a quantized fashion due to the nonuniversal
behavior of κa . We write again a = a1 + a2 for two vortices
and consider the cross terms in the CS term between a1 and
a2. In a superfluid, the external electromagnetic gauge field is
absent and we have a1μ = − 1

2∂μ arg(r − x1(t)), where x1(t) is
the position of vortex 1, and similarly for a2. The calculation
is simplified by assuming that only vortex 2 moves, so that
a1t = 0. Then, only one of the cross terms contributes and

χ sf
a = − κa

8π

∫
drdt a2t (∇ × a1)t = −πκa

16
. (13)

In a neutral superfluid, this leads to a nonuniversal long-range
contribution to the exchange phase of vortices.

By contrast, for a charged superfluid, the screened magnetic
field is screened as (∇ × A)t = ẑ K0(r/λ)/(2λ2), associated
with a vortex at the origin, where K is the modified Bessel
function of the second kind and λ is the (effective) penetration
depth. This modifies the result by a geometric phase,

κa

8π

∫
drdt a2t (∇ × A1)t = −πκa

16

[
1 − R0

λ
K1

(
R0

λ

)]
,

(14)
for a circular exchange at distance R0. So, in a superconductor
the total exchange angle due the partial CS term is

χ sc
a = −πκaR0

16λ
K1

(
R0

λ

)
. (15)

When the distance between the vortices is much longer than
λ this exchange angle vanishes exactly. However, at distances
smaller or comparable to λ, nonuniversal contributions to the
exchange phase will occur.

Therefore the total exchange angle χ = χa + χb depends
on the details of the dispersion and, in particular, is different in
a chiral p-wave superfluid from that in a superconductor due
to screening effects.

V. DISCUSSION

In the derivation above, we concentrated on the case where
the size of the core of the vortex is vanishingly smaller
compared to other length scales. We note that even in this
limit, the 2π winding of the phase entails the presence of
the protected zero mode in the topological phase. In addition,
higher-energy subgap states may occur, localized at the vortex
core [40]. The field theory presented above would include the
effects of both the zero mode and the subgap states in the two
gauge fields a and b if all orders of the loop expansion are
retained. To the second order, we find only the Chern-Simons
term, which fully encodes the topological exchange phase.
This phase is quantized and cannot be modified without
closure of the gap. Nonuniversal effects associated with the
subgap states may occur in higher order in perturbation theory,
which may include effects such as population transfer between
closely separated intravortex states [41].

Taking a finite core size may allow additional localized
subgap states to get trapped within the vortex. One can model
this case by varying the chemical potential εF around the
vortex through the topological phase transition between the
topological weak-pairing phase (εF > 0) outside of the vortex
core and the nontopological strong-pairing phase (εF < 0)
within the vortex core. As far as topological properties are
concerned, this is equivalent to taking the order parameter to
zero at the vortex core but lends itself better to field theoretical
analysis [12,42]. In this description, the loci of εF = 0 that
encircle the vortices’ cores are internal edges of the system and
accommodate gapless excitations. Although their proximity
to the Majorana zero modes may affect the coherence of
the vortices [41,43,44], as long as they do not mix with the
continuum states the Majorana zero mode remains intact [45].
To incorporate this into our field theory, we take the chemical
potential to be μ(r) = εF + δμ(r), where δμ(r) denotes the
deviation from εF and has support mostly within the vortex
core, i.e., within the coherence length. The new term can be
absorbed into at → at − δμ. One new term that appears in
the field theory, δμ(r)n, pushes vortices to diffuse along the
chemical potential gradient occurring due to other vortices
when their cores overlap. A second term ∝δμ(r)εij ∂iaj

generates energetic contributions which go to zero at distances
that are larger than the coherence or penetration lengths
(whichever is larger). Since there is no coupling between a

and b in the effective theory, this modification does not change
the topological CS term. At distances larger than the coherence
length and to second order in perturbation theory, we find no
contribution to the topological Abelian phase associated with
the exchange of vortices.

It is also illuminating to compare our results to the non-
Abelian Moore-Read state, which is one of the prominent
candidate wave functions describing the quantum Hall plateau
at filling factor 5/2 [10,12]. While lying in the same uni-
versality class of Ising anyons as chiral p-wave superfluids,
the Moore-Read state is realized at large magnetic fields,
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leading to the appearance of an additional Chern-Simons
term in the mean-field action. This extra term endows the
quasiparticles with an e/4 charge and half a flux quantum of
fictitious magnetic field. Consequently, there is an additional
π/8 exchange phase for quasiparticles, which should be added
to the pure Ising π/8 contribution, for a total exchange phase
of π/4. Nonuniversal deviations from this value must be
governed by the magnetic length, so any mapping of our results
to the Moore-Read state, if it at all exists, remains to be worked
out. In contrast to the Moore-Read state, our main result
here demonstrates that vortices in a screened chiral p-wave
superconductor could realize a pristine Ising anyon model.

VI. CONCLUSION

We have derived an effective action of vortices in a spinless
chiral p-wave superfluid by properly treating the vortex branch
cuts and revealed an Abelian Z2 gauge structure for the
chiral p-wave superfluid. In principle, our transformation is
applicable to any pairing symmetry and arbitrary distribution
of vortices. In the s-wave case, we have checked that this does
not produce additional terms in the action. In the d-wave case,
a similar approach has been used to formulate an effective
theory of cuprate superconductors [46,47], but no CS term
was found.

The topological quantum computation scheme relies
on adiabatic braiding of non-Abelian anyons to gener-
ate the quantum computation. Among non-Abelian anyon
models, Majorana fermions are arguably the closest to
experimental work. However, braiding of vortices carrying
Majorana fermions is nonuniversal unless supplemented by
a missing π/8 gate. While this gate can be generated by
sacrificing topological protection it remains of fundamental
importance to provide a proof-of-principle topological scheme
to supply the missing π/8 gate, thus avoiding costly error
protection protocols. The results presented here allow the
realization of the missing π/8 gate through multiple braiding
of the anyons [17]. As argued above, such braidings should be
performed at distances larger than both the coherence length
and the screening length.

In this work, we restricted our attention to the Abelian
gauge transformations (2). This is enough to infer the Abelian
exchange phase of vortices. It can also be used to deduce the
existence of zero energy Majorana modes. Using the particle-
hole symmetry of the Hamiltonian density, we can write the
number density of zero modes as ν0 = 2〈η̄(r)η(r)〉 [48,49].
Now, since

〈η̄(r)η(r)〉 = 2〈δSeff/δbt 〉 = κb

2π
(∇ × b)t ,

and b is defined as a Z2 gauge field, we find

ν0 = κb

∑
j

δ(r − xj (t)) (mod 2), (16)

which is quantized and equal to the single winding vortex
density (mod 2) in the weak pairing regime. A natural
question for future work is whether the other parts of the
full group of gauge transformations harbor additional physics.
Indeed, as is well known, the zero-energy Majorana modes
endow the vortices with the non-Abelian statistics of Ising

anyons [12,13]. It would be interesting to see if such a
non-Abelian representation emerges in the gauge structure of
the effective vortex action by using the entire group of gauge
transformations.
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APPENDIX: DERIVATION OF THE ACTION

In the following, we provide the details of the derivation
of the effective action appearing in the Results section,
Eq. (4). We first write the “dressed” Green’s function
as G−1 = G−1

0 + V , where the “bare” Green’s function is
G0(k) = (kt1 − g(k) · τ )−1 and V depends explicitly on a and
b, i.e.,

V = −bt + τzat − τμhμ(p − b,a) + τμhμ(p,0). (A1)

We now perform a perturbative expansion to second order in
the gauge fields, writing

Seff = −i ln Pf(G−1) = −i
1

2
Tr ln(G−1)

= − i

2
Tr ln

(
G−1

0

) − i

2
Tr ln(1 + G0V ) (A2)

� − i

2
Tr ln

(
G−1

0

) − i

2
Tr(G0V ) + i

4
Tr(G0V G0V ).

The fields a and b couple via their associated currents

jμ
a = δ

μ
t τz + ∂kμ

gz

(
1 − δ

μ
t

)
,

j
μ

b = ∂kμ
G−1

0 . (A3)

To calculate traces, we use the following formulas:

tr{τμτν} = 2δμν,

tr{τλτμτν} = 2iελμν, (A4)

tr{τλτμτντσ } = 2(δλμδνσ − δλνδμσ + δλσ δμν).

1. The nonvanishing terms

We proceed to derive the coefficients of the five terms
appearing in the action, Eq. (4).

The coefficient n. The coefficient multiplying at is
n = − i

2(2π)3

∫
d3k tr(G0τz). Since it contains an integration

over a single Green’s function, care should be taken in its
calculation. The correct analytical structure requires that the
Green’s function is multiplied by an exponent eiτzkt η, where
η → 0, leading to the expression

n = − i

2(2π )3

∑
s=±

∫
d3k

skt + gz

k2
t − |g|2 + iη

eisηkt . (A5)
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x

y

λ

-λ

1

FIG. 3. Contours of integration and poles of the Green’s function.
The contours of integration that are used in zero temperature
calculations for the particle (top) and hole (bottom) part of the Green’s
function.

Using contour integration over kt (see Fig. 3 where λ ≡√
|g|2 − iη), one obtains the expression

n = 1

8π2

∫
dk

(
1 − gz

|g|
)

. (A6)

In the p-wave case, the integral is formally divergent and
an energy cutoff � = �2

k/(2m) − εF needs to be introduced
(here �k is a momentum cutoff set only by the inverse lattice
spacing)

n(�) = m

4π

∫ +�

−εF

dξ

(
1 − ξ√

ξ 2 + 2mv2(ξ + εF )

)
. (A7)

The coefficient ρt . Writing the appropriate second order
correlator,

ρt = i

32π3

∫
d3k tr

(
G0j

t
aG0j

t
a

)

= i

16π3

∫
d3k

k2
t − g2

x − g2
y + g2

z(
k2
t − |g|2 + iη

)2

= 1

16π2

∫
dk

g2
x + g2

y

|g|3 ,

where we used the integral

∫ ∞

−∞
dkt

αk2
t + β(

k2
t − |g|2 + iη

)2 = iπ (−α|g|2 + β)

2|g|3 , (A8)

with α = 1 and β = g2
z − g2

x − g2
y . For p-wave superfluids in

the infinite system limit,

ρt = 1

16π2

∫
dk

v2k2(
ξ 2

k + v2k2
)3/2 = mκ∞

a

4π
, (A9)

where κ∞
a = (1 − εF −|εF |

mv2 )
−1

coincides with the coefficient of
the partial CS term, to be derived below.

The coefficient ρi j . Formally, this coefficient has contribu-
tions both from first order and second order in the gradient
expansion. The first-order contribution is

−i

2(2π )3

∫
d3k tr

[
G0

(
− τz

2m
δij

)]
= − n

2m
δij . (A10)

For gz = ξ , we can write δij /m = ∂ki
∂kj

gz, to obtain the
form in the main text. The second-order contribution exactly
vanishes following the integration over kt ,

i

32π3

∫
d3k tr

(
G0j

i
aG0j

j
a

)

= i

16π3

∫
d3k

∂gz

∂ki

∂gz

∂kj

k2
t + |g|2(

k2
t − |g|2 + iη

)2 = 0. (A11)

The coefficient κa. To calculate κa , we consider the
correlator of j t

a and j
j
a to first order in qi (no summation

convention)

iqi

64π3

∫
d3k tr

(
∂ki

G0τ3G0
∂gz

∂kj

− G0τ3∂ki
G0

∂gz

∂kj

)

= iqi

64π3

∫
d3k tr

(
[∂ki

G0,τ3]G0
∂gz

∂kj

)

= −qi

16π3

∑

m

∫
d3k

1(
k2
t − |g|2 + iη

)2 ε
mg


∂gm

∂ki

∂gz

kj

= −iqi

32π2

∑

m

∫
dk

1

|g|3 ε
mg


∂gm

∂ki

∂gz

∂kj

. (A12)

For the infinite system p-wave superfluid this results in (no
summation convention)

iqiεij

32mπ2

∫
dk

v2k2
j

(ξ 2
k + v2k2)3/2

= iqiεij

16π
κ∞

a . (A13)

The coefficient κb. For convenience, we consider one of the
correlators giving rise to the CS coefficient

iqt

64π3

∫
d3k tr[∂kt

G0(∂kx
g τ )G0(∂ky

g τ )

−G0(∂kx
g · τ )∂kt

G0(∂ky
g τ )]

= iqt

32π2

∫
dk

εμνλgμ∂kx
gν∂ky

gλ

|g|3 . (A14)

For the infinite system p-wave superfluid, we get

κ∞
b = 1

4π

∫
dk

( k2

2m
+ εF

)
v2[

v2k2 + ( k2

2m
− εF

)2]3/2 = �(εF ). (A15)
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2. The vanishing terms

We provide an argument for the decoupling of the a and b

fields, as well as for the vanishing of all mass terms for the
field b.

The decoupling of the fields a and b. It can be shown that
the integrand of the correlator describing the coupling between
a and b,

∫
d3k tr

[
G0

(
k + q

2

)
jμ
a (k)G0

(
k − q

2

)
jν
b (k)

]
, (A16)

is always odd under k → −k. Therefore it vanishes to all
orders in q following an integration over k.

The absence of mass terms for the field b. In first order in
the gradient expansion, we find the following contribution to
the mass of b:

−i

2(2π )3

∫
d3ktr

[
G0

(
− τz

2m

)]
= − n

2m
. (A17)

Another contribution appears in second order (no summation
convention),

i

32π3

∫
d3k tr

(
G0j

i
bG0j

i
b

)

= 1

16π2

∫
dk

|g|2(∂ki
g ∂ki

g) − (g ∂ki
g)2

|g|3 , (A18)

where in the infinite system p-wave superfluid we get, after
integration over the angle of k,

1

16π

∫ �k

0
d|k|v

2|k|
|g|3

(
k4

2m2
+ 2ε2

F + v2k2

)
. (A19)

While each is formally divergent, the sum of the two
contributions, Eqs. (A17) and (A19), now converges to zero,

lim
�k→∞

[
n

2m
− 1

16π

∫
d|k||k| v2

|g|3
(

k4

2m2
+ 2ε2

F + v2k2

)]

= lim
�k→∞

(
n

2m
− ∂mn

4

)
− |εF | + mv2

8π
κ∞

a = 0. (A20)
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We consider a modified setup for measuring the Aharonov-Casher phase which consists of a Josephson vortex
trapped in an annular topological superconducting junction. The junction encloses both electric charge and mag-
netic flux. We discover a deviation from the Aharonov-Casher prediction whose origin we identify in an additive
universal topological phase that remarkably depends only on the parity of the number of vortices enclosed by the
junction. We show that this phase is ±2π times the topological spin of the Josephson vortex and is proportional
to the Chern number. The presence of this phase can be measured through its effect on the junction’s voltage
characteristics, thus revealing the topological properties of the Josephson vortex and the superconducting state.

DOI: 10.1103/PhysRevB.95.161401

One of the exciting aspects of topological order is the any-
onic excitations it supports, which admit fractional charge and
exotic quantum statistics. Several fundamental types of anyons
can be realized as vortex defects in topological superconduc-
tors, generating intensive interest in their properties [1–3].
However, detecting the anyonic properties of these vortices is
an ongoing challenge. It has been proposed [4] that Josephson
vortices retain the anyonic properties of bulk vortices and thus
could be viable candidates for the interference experiments
required to unequivocally measure their statistics. However,
determining the anyon class of Josephson vortices requires
finding the value of their universal exchange phase, which has
not yet been reported. This exchange phase is of particular
interest as it was argued that it could be used to supplement
the set of quantum gates generated by the Josephson vortices
to form a universal set [5,6].

In this Rapid Communication, we report a method to calcu-
late the universal exchange phase for Josephson vortices and
propose a proof-of-principle experiment by which to measure
it. We derive an effective quantum Hamiltonian for a Josephson
vortex in a topological Josephson junction [TJJ; see Eq. (12)],
unveiling the role of the low-lying Majorana edge states in the
soliton dynamics. For the case of a soliton going around an
annular Josephson junction [7,8] (see Fig. 1), the soliton accu-
mulates a universal phase related to the exchange phase of Ising
anyons. This phase can be exploited to induce a persistent mo-
tion of the vortex around the junction, triggered by the nucle-
ation of an additional vortex in the region enclosed by the junc-
tion (i.e., by changing the magnetic flux � through the central
hole). This induced motion drives the Josephson junction into
its finite voltage state [9], revealing the presence of the phase.

Our results therefore uncover a significant difference
between nontopological Josephson junctions and TJJs. For
the former, an externally induced charge Q can drive the
Josephson vortex into a persistent motion [7] through the
Aharonov-Casher effect [10–12]. This system is analogous to
an Aharonov-Bohm ring for electrons. However, the Josephson
vortex remains unaffected by other vortices in the system. In
contrast, for TJJs, the persistent motion of the Josephson vortex
can be controlled with, instead of one knob, two: (i) contin-
uously using the induced charge Q in the region enclosed by
the junction and (ii) using the enclosed flux which nucleates
vortices inside the path of the vortex, hence changing their
parity. In units of electron charge, the nucleation of an extra

vortex within the central region is equivalent to an e/4 (where
e is the electronic charge) shift in the enclosed charge Q.

The dynamics of a TJJ is governed by a modified sine-
Gordon Hamiltonian, where the regular bosonic degrees of
freedom couple with the low-lying Majorana fermions. In
particular, properties of phase solitons (Josephson vortices)
through the junction are modified so that each soliton carries
a Majorana zero mode [4,13–16]. While experiments to probe
the presence of this Majorana mode have been proposed
[4,14,17], little attention has been given to the universal
properties of the host soliton itself.

We start by discussing the fundamental mechanism behind
the topological spin of a Josephson vortex. We then derive
explicitly an effective Hamiltonian for the Josephson vortex
and demonstrate how the topological spin plays a role in its
dynamics. Next, we calculate the Berry connection governing
the phase that the Josephson vortex accumulates. Finally, we
propose a setup for measuring this phase.

Topological spin of the Josephson vortex. We start by identi-
fying the origin of the topological spin of the Josephson vortex.
TJJs [13,18] differ from their nontopological counterparts by
the presence of a pair of one-dimensional counterpropagating
Majorana states present at the junction, with a Hamiltonian
Hψ = H + H̄ (H describes the external edge, and H̄ describes
the internal one):

H = i
v

2

∫
dx ψ(x)∂xψ(x),

H̄ = −i
v

2

∫
dx ψ̄(x)∂xψ̄(x). (1)

FIG. 1. An annular topological Josephson junction trapping a
single soliton. The soliton is depicted in blue. Counterpropagating
Majorana edge states are nucleated in the junction. A charge Q and
phase � are induced externally within the central region (red).
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Here x ∈ [0,L] is the coordinate of the edge, and v is
the neutral edge velocity. The fields obey anticommutation
relations of the form {ψ(x),ψ(x ′)} = {ψ̄(x),ψ̄(x ′)} = δ(x −
x ′), and {ψ(x),ψ̄(x ′)}=0. We perform the following mode
expansion:

ψ(x) =
√

1

L

∑
n

e−2πinx/Lψn,

ψ̄(x) =
√

1

L

∑
n

e2πinx/Lψ̄n. (2)

The modes ψn satisfy {ψn,ψn′ } = δn+n′,0 (with similar nota-
tion for the opposite chirality). Note that in particular this
implies ψ2

0 = 1/2 (for either chirality). Plugging this into the
Hamiltonian, we get

H = 2πv

L

[
1

2

∑
n

nψ−nψn

]
≡ 2πv

L
L,

H̄ = 2πv

L

[
1

2

∑
n

nψ̄−nψ̄n

]
≡ 2πv

L
L̄. (3)

We now explore the properties of L and L̄, the dimensionless
momentum operators. Using Eq. (2), periodic boundary con-
ditions on the Majorana field imply n ∈ Z, while antiperiodic
boundary conditions imply n ∈ Z + 1

2 .
We examine the change in momentum when the boundary

conditions are exchanged between periodic and antiperiodic
for a closed circular Josephson junction in the absence of
tunneling. We write L and L̄ as

L =
∑
n>0

nψ−nψn − 1

2

∑
n>0

n ≡
∑
n>0

nψ−nψn + L0(Nv),

L̄ =
∑
n>0

nψ̄−nψ̄n − 1

2

∑
n>0

n ≡
∑
n>0

nψ̄−nψ̄n + L̄0(N̄v), (4)

where L0 (L̄0) is the ground-state contribution and Nv (N̄v)
denotes the number of vortices enclosed by the external
(internal) edge. Specifically, when there is an odd number
of vortices enclosed by the edge, n ∈ Z; otherwise, n ∈
Z + 1/2. We now calculate the difference in the ground-state
contribution in the presence of a Josephson vortex within the
junction, i.e., Nv = 1 and N̄v = 0. We employ a regularizing
function F (x) such that F ′(x) = ∂xF (x) decays to zero faster
than 1/x2 when x → ∞ and F ′(0) = 1. We calculate the
regularized sum [19]

�L0 = L0(1) − L̄0(0)

= −1

2

∞∑
n=1

{
nF ′(αn) −

(
n − 1

2

)
F ′

[
α

(
n − 1

2

)]}
. (5)

By taking the limit α → 0 we now get

�L0 = −1

2
∂α

∞∑
n=1

{
F (αn) − F

[
α

(
n − 1

2

)]}

= −1

2
∂α

∞∑
n=1

[
α

2
F ′(αn) −

(α

2

)2 1

2
F ′′(αn)

]

= −1

2
∂α

∫ ∞

α/2
d(αn)

[
1

2
F ′(αn) − α

8
F ′′(αn)

]

= 1

16
[F ′(0) + F ′(∞)] = 1

16
. (6)

This result gives the value of the topological spin of the vortex,
which is related to the dimension of the spin operator of the
Ising conformal field theory (see, e.g., [20]). In the following
we explore how this quantized momentum shift can affect the
dynamics of the soliton in the presence of tunneling between
the two Majorana edge states.

Effective Hamiltonian for the Josephson vortex. We now
proceed to show that the effective description of a Josephson
vortex contains explicitly the topological spin discussed above.
We turn on the electron tunneling across the junction, leading
to a Josephson term and a Majorana tunneling term.

The Josephson term is encapsulated in Hϕ , which governs
the dynamics of the relative phase degree of freedom ϕ across
the junction [21]:

Hϕ = h̄c̄

g2

∫
dx

{
1

2c̄2
ϕ̇2 + 1

2
ϕ′2 + 1

λ2
[1 − cos ϕ]

}
, (7)

where ϕ̇ ≡ (g2c̄/h̄)�, with � being the canonical momentum,
λ is the Josephson penetration length, c̄ is the renormalized
velocity of light, and g is a dimensionless constant which
depends on the parameters of the junction [7].

The Majorana tunneling term is first order in the electron
tunneling and takes the form

Htun = i

∫
dx W (x)ψ(x)ψ̄(x), (8)

where W (x) = m cos [ϕ(x)/2] is the Majorana mass term
[4,13].

The full Hamiltonian for the TJJ, HTJJ = Hϕ + Hψ + Htun

[4], is an extension of the supersymmetric sine-Gordon model
for general values of m [15]. The bosonic degrees of freedom
couple with the low-lying Majorana fermions, which we now
turn to solve in the presence of a single soliton.

We consider the solution for a classical soliton in the
nonrelativistic limit which for short and long Josephson
junctions takes the approximate forms [22]

ϕs(x,q(t)) � 2π

(
x − q(t)

L

)
, λ � L,

ϕs(x,q(t)) � 4 arctan exp

(
x − q(t)

λ

)
, λ 	 L, (9)

respectively, with a center-of-mass coordinate at q(t). We
plug the solution into the Euclidean action derived from
the Hamiltonian Hϕ to get the energy associated with the
soliton center-of-mass coordinate [23], 1

2msq̇
2 + E0, where

we defined the soliton mass ms [ms = (2π )2h̄/g2c̄L for λ � L

and ms = 8h̄/g2c̄λ for λ 	 L] and the soliton rest energy [7].
We now proceed to the Majorana sector, Hψ = ∫

dx �T H0�,
with � = (ψ ψ̄)T and

H0 = 1

2

[
iv∂x iW (x,q(t))

−iW (x,q(t)) −iv∂x

]
, (10)
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where W (x,q(t)) = m cos[ϕs(x,q(t))/2]. The equations sim-
plify considerably by taking a Galilean boost to the moving
frame,

x ′ = x − q(t), t ′ = t,

∂x = ∂x ′ , ∂t = −q̇∂x ′ + ∂t ′ .

We see that the Majorana fields couple to the center-of-mass
velocity of the soliton via a vector-potential-like term that
measures the total momentum carried by the two counterprop-
agating edge states, taking the form

i

2
q̇

∫
dx(ψ∂xψ + ψ̄∂xψ̄) = 2π

L
q̇(L − L̄). (11)

The junction Hamiltonian HTJJ, written in the background of a
single soliton, is given in terms of the soliton’s center-of-mass
momentum p̂ (which we now reinstate as a quantum operator)
as

Hs = E0 + 1

2ms

[
p̂ − 2π

L
(L − L̄)

]2

+ 2πv

L
(L + L̄) + i

∫
dx W (x)ψ(x)ψ̄(x). (12)

This Hamiltonian describes the dynamics of the Josephson
vortex within the junction and is our first main result. The
ground-state contribution to the vector potential is given by

2π

L
(L0 − L̄0) = (−1)Nv

2π

L

1

16
, (13)

coinciding with the one calculated previously in Eq. (6). This
suggests that the topological spin of the soliton affects its
dynamics and may be measurable. We next turn to show that
the low-lying fermion states do not affect the universality
of this phase in the adiabatic limit by providing numerical
evidence.

The Berry connection. Due to the interactions of the
Josephson vortex with the subgap states of energies �n

(n = 0,1, . . .), the phase of the soliton is universal only when
its traverse time around the junction is large compared toh̄/�1.
We establish this by introducing a numerical procedure for
finding the Berry phase that the ground state |
q〉 accumulates
as function of the position of the soliton, q.

We take a short Josephson junction. When the soliton goes
adiabatically around the junction, the Majorana edge states
depend parametrically on its position. In addition, there is
a Z2 phase associated with the motion of the soliton: when
the soliton completes a cycle, each fermionic mode enclosed
by its motion acquires a minus sign. We work in momentum
states and truncate the Hilbert space to retain 4N + 2 modes:
2N modes in the antiperiodic edge and 2N + 1 modes in the
periodic edge, the latter including a Majorana zero mode ψ0.
The final mode we retain is the extra Majorana zero-energy
state ψv , which is localized far from the Josephson junction,
either at the center of the annulus or at its outer edge, depending
on the parity of the number of vortices in the central hole.
In addition, we perform a gauge transformation in which
the Majorana fields are single valued under q → q + L by
absorbing the Z2 phase into the Majorana tunneling term.

Next, we transform the Hamiltonian into a Bogoliubov form
for fermions by taking appropriate superpositions of the two

zero-energy Majorana fermions, (ψ0 ± iψv)/
√

2. The spinor
is then rearranged so that particle-hole conjugation is written
as τxK (where τx is the first Pauli matrix in Bogoliubov space
and K is complex conjugation). The Hamiltonian can then be
diagonalized via(

H1 H2

H
†
2 –H ∗

1

)(
U V ∗
V U ∗

)
=

(
E 0
0 −E

)(
U V ∗
V U ∗

)
. (14)

The correct choice of the zero mode that is contained in
the positive-energy group of 2N + 1 eigenvectors leads to
a nonvanishing determinant of U . We can then use Eq. (14)
to form the BCS ground state |
q〉. Explicitly, for q = 0, the
Hamiltonian blocks are H1 =⊕2N

k=0
kπ
L

and

H2 = m

2

[
0⊕

(
N⊕

k=1

σy

)
−

(
σy√

2

)
⊕

(
N−1⊕
k=1

σy

)
⊕ 0

]
.

The Berry connection for |
q〉 is given by

i〈
q |∂q
q〉 = i

4
Tr{(1 + gg†)−1[g′g† − g(g†)′]}, (15)

where g = (V U−1)∗ [24]. In addition, we define the translation
operator T for the soliton χq = Tqχ0, with χT

q = (UT
q ,V T

q ).
Tq is given explicitly by Tq = ZqPq , with Pq generating the
translation and Zq generating the Z2 transformation:

Pq = P (1) ⊕ P (2), P (1) = P (2)∗ =
2N+1⊕
n=1

e(−1)n(1−n)iπq/L,

Zq = Z(1) ⊕ Z(2), Z(1) = Z(2) =
2N+1⊕
n=1

(−1)mod(n,2)� q

L
+ 1

4 �.

We diagonalize Eq. (14) numerically for q = 0, and using
Tq we obtain the eigenvectors for any other position of
the soliton. We substitute into Eq. (15), performing the
derivative symbolically. The result is presented in Fig. 2
with the overlap calculated using the Onishi formula,
|〈
−q |
q〉| =

√
| det χ †

−qχq | [25] for two counterpersisting

FIG. 2. Numerical results for the geometric phase accumulated
by the persisting Josephson vortex. The dashed brown line describes
the geometric phase accumulated by each persisting soliton in the
presence of a vortex within the central region. In addition, the solid
black line describes the overlap norm of two counterpropagating
solitons, which becomes nonzero at half cycles. At these points the
geometric phase of each soliton acquires its universal values nπ/16,
n ∈ Z.
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FIG. 3. Energy spectrum for the Josephson vortex. Solid red lines
describe the energy of the Josephson vortex in the presence of an
even number of vortices enclosed within its path. Dashed blue and
dotted green lines describe the case with an odd number of vortices
(for even and odd fermion parities, respectively). The velocity of
the persisting soliton is proportional to the gradient of the energy,
vs ∝ ∂QE. Fermion parity changing effects open a gap between the
green and blue lines, disorder opens a gap between lines of the same
color.

solitons, demonstrating that the topological spin is, in
principle, an observable. We repeated the procedure taking
reversed boundary conditions on the two Majorana edge
states, obtaining the same phase but with an additional minus
sign, which reproduces Eq. (13) to machine precision.

Proposed setup for detecting the phase shift. We finally
consider the setup depicted in Fig. 1 where a single Josephson
vortex is trapped within the junction and the voltage between
the inner and outer superconducting plates is measured. The
energy spectrum of the Josephson vortex can be derived
from Eq. (12), and in the presence of an externally induced
Aharonov-Casher charge Q within the central region, is given
by

Es = Ec

[
Q

2e
+

(nf

4
+ nv

16

)
− Nb

]2

, (16)

where Ec is the charging energy for the junction, nf = (−1)Nf

is the fermion parity within the enclosed path of the Josephson
vortex (Nf is the fermion number), nv = (−1)Nv is the parity
of the number of vortices within the same region, and Nb ∈
Z is the relative number of Cooper pairs between the two
superconducting plates. In the low-energy sector there is an
emergent dependence between nf and nv: If nv = 1, then nf =
1, but if nv = −1, then nf is free [4].

Assume we start from the case that there are no vortices
within the central hole in the annulus (Fig. 1), i.e., nv = 1
and nf = 1. The junction can be tuned into the zero voltage
state by shifting the induced Aharonov-Casher charge Q. The
Josephson vortex accordingly acquires a vanishing velocity.
Next, we add an extra vortex within the central region of the
sample, shifting the value of nv to −1. The Josephson vortex
acquires a phase shift which is equivalent to a ±e/4 shift in the
induced Aharonov-Casher charge (see Fig. 3). It then performs
a persistent motion, and the junction is driven into its finite
voltage state. This dependence of the voltage characteristics

of the junction on the number of vortices enclosed within the
junction is our second main result.

One possible realization of the system is a topological
insulator with an s-wave superconductor deposited on its
surface, forming a Josephson junction shaped as in Fig. 1.
The dynamics of the soliton will be largely determined by
the s-wave superconducting layer, while a Majorana zero
mode will be trapped by the soliton on the surface state
of the topological insulator. Furthermore, the charge on
the central island will be varied by means of a capacitive
gate [12].

Discussion. Our central result is the identification of a
relative π/4 phase associated with a Josephson vortex in a
topological Josephson junction encircling an odd versus even
number of vortices. It is useful to compare this result with
the full conformal case which describes the physics with a
vanishing Majorana mass, m = 0. Then, vortex exchange is
captured by a standard fusion rule from conformal field theory
(see, e.g., [20]), σ (z)σ (0) ∼ z−1/8[I + z1/2ψ(z)], where I is
the identity field and ψ and σ are fields of dimensions 1/2 and
1/16, respectively. By identifying the field σ (z) as the vortex
and z = x + iy as its coordinate, this equation reproduces
the presence of a −π/4 phase shift for a rotation of one
vortex around another, z → e2πiz. For the case of an odd
fermionic number, a 3π/4 phase shift would ensue. Instead,
in our case, the nonzero Majorana mass term protects the
anyon properties decided by the bulk topological quantum
field theory, which is a manifestation of Ocneanu rigidity
[26].

Finally, we address the context of this work from ex-
perimental and theoretical perspectives. Trapping a single
Josephson vortex within an annular Josephson junction has
been experimentally achieved [9,27]. It was demonstrated
that the Josephson vortex is able to tunnel through a barrier,
revealing its quantum nature [9]. Interference experiments
of Josephson vortices have been reported [12]. Recently,
Josephson vortices were directly observed with scanning
tunneling spectroscopy, and their local density of states was
deduced [28]. More specifically, in the context of topo-
logical superconductors, quasiparticle poisoning may affect
observables that are sensitive to fermion parity-changing
effects. However, the e/4 shift discussed here remains immune
to a shift by e, and hence so is the residual motion of
the soliton generated by it. Possible realizations of annular
topological Josephson junctions were discussed in [4] us-
ing semiconductor heterostructures or p-wave superconduc-
tors (see, e.g., [29]). Solitons in other scenarios involving
p-wave superconductors and two-band superconductors were
discussed in [30,31]. Other papers touching on the Aharonov-
Casher effect in topological superconductors include [32,33].
The effective action of bulk Abrikosov vortices was considered
in [34].
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der Grant No. 303742, and the Binational Science Foundation
through Grant No. 2014345.
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The physics of a planar chiral p ± ip superconductor is studied for various vortex configurations. The
occurrence of vortex quasiparticle bound states is exposed together with their ensuing collective properties,
such as subgap bands induced by intervortex tunneling. A general method to diagonalize the Hamiltonian of a
superconductor in the presence of a vortex lattice is developed that employs only smooth gauge transformations.
It renders the Hamiltonian to be periodic (thus allowing the use of the Bloch theorem) and enables the treatment of
systems with vortices of finite radii. The pertinent anomalous charge response cxy is calculated (using the Streda
formula) and reveals that it contains a quantized contribution. This is attributed to the response to the nucleation
of vortices from which we deduce the system’s quantum phase.

DOI: 10.1103/PhysRevB.98.104511

I. INTRODUCTION

Measurement of the polar Kerr effect (PKE) in the su-
perconducting state of Sr2RuO4 indicates the presence of
time-reversal symmetry breaking [1,2]. However, so far no
quantitative agreement has been established between theoreti-
cal and experimental values of the Kerr angle [3–8]. The latter
is proportional to the Hall conductivity, which in turn is propor-
tional to the anomalous charge response cxy [9]. The quantity
cxy is finite only in a chiral superconductor [10,11], so the
measurement of the PKE provided some of the first evidence
for the p ± ip nature of the order parameter of Sr2RuO4.

In this paper, we calculate cxy at zero magnetic field and
zero vorticity using a modified Streda formula and show that
cxy is a sum of two contributions, one which is nonuniversal,
and the other equals κ/8π , where κ is the Chern number of
the superconductor, as depicted in Fig. 1. An important insight
gained thereby is that an accurate evaluation of cxy requires
the knowledge of the charge response to the application of a
weak magnetic field and a compensating vortex pair as dictated
by imposing periodic boundary conditions (PBCs). This is
equivalent to elucidation of the charge response following
a chirality flip of the superconductor. Eventually, however,
the effect of vortices characteristics (such as their positions
as well as their detailed structures) on cxy is minor, and our
main results appear to be universal. Once cxy is elucidated, the
Hall conductivity at a zero magnetic field and vorticity can be
extracted from cxy using a standard procedure [9,11], and that
has bearing on the experimentally measured PKE.

In order to substantiate our main result, we need to consider
the response of the superconductor to the insertion of a single
Dirac flux quanta (� = h/e) and compensating pair of vor-
tices. Due to the PBCs imposed on the system when employing
the Streda formula, it is natural to solve an equivalent problem
for a system composed of many copies of the (originally finite)

*daniel@ariad.org

system, which maps onto an infinite superconductor in the
presence of a periodic vortex lattice. The vortices are assumed
to have finite radii, thus enabling us to explore the possible
dependence of cxy on the presence of vortex bound states.

A natural framework for studying the physics of a periodic
vortex lattice is to employ Bloch’s theorem. However, this
procedure is hindered by the fact that the vector potential
and the phase of the order parameter are not independently
periodic over the magnetic unit cell (MUC). One may try
to apply a gauge transformation to combine the two into
a single field which is proportional to the supercurrent. As
the latter is periodic in the lattice, Bloch theorem can be
employed. However, since the gauge transformation is singular
in the presence of vortices, this procedure introduces spurious
magnetic fields in the center of the vortices. These spurious

−4 0 4 8 12
μ

−4

−2

0

2

4

cxy

×10−2

Numerical Analytical Difference

FIG. 1. Average anomalous charge response cxy vs chemical po-
tential μ for a planar p-wave superconductor. The result of a modified
Streda formula (Numerical) is compared with the prediction of the
effective low-energy theory of a p-wave superconductor (Analytical).
Here t = |�| = 1 and ξ = 2.5. In addition, the magnetic unit cell
contains 40 × 41 sites and two vortices that are pinned on its diagonal,
partitioning it in a ratio of 1:2:1.
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fields either break particle-hole symmetry or introduce branch
cuts, originating from the vortex centers, that lead to numerous
technical obstacles [12–16].

To circumvent these obstacles, we develop an algorithm to
perform an efficient exact diagonalization of the Bogoliubov–
de Gennes (BdG) Hamiltonian for an infinite two-dimensional
(2D) vortex lattice in a general tight-binding model, that
completely avoids the use of singular gauge transformations.
Instead, a smooth gauge transformation is employed, that
renders both the order parameter and the hopping amplitudes
to be independently periodic on the lattice sites.

II. GENERALITIES

It is our perception that the algorithm developed here for
the diagonalization of the Hamiltonian is not just a numerical
trick, but rather, it meticulously exploits the pertinent physical
concepts. Thus, it is worthwhile to illuminate its construction
step by step right at the onset. First, we derive an exact
expression for the phase of the order parameter by summation
over vortices in an ordered array in a superconductor. Second,
we transform to another gauge that allows for simultaneously
taking the superconducting phase function and the Peierls
phases to be periodic functions (mod 2π ) without sacrificing
any of their properties. Third, we introduce a new gauge for
the vector potential, which we dub the “almost antisymmetric
gauge (AAG),” which allows accessing, in a system with
PBCs, the highest resolution for its magnetic-field dependence.
Fourth, we diagonalize the Hamiltonian in a single unit cell
under varying boundary conditions per the Bloch theorem,
i.e., for different values of the lattice momentum. Thus we
extract both the full spectrum of the Hamiltonian and its wave
functions.

III. HAMILTONIAN AND ORDER PARAMETER

For spin-1/2 fermions (spin projection s =↑,↓), the BdG
Hamiltonian in its tight-binding form (taking h̄ = c = e = 1)
consists of three terms Ĥ = T̂ + �̂ − (μ − 4t )N̂ . The hop-
ping term reads

T̂ = −t
∑
r,s,i

exp

(
i

∫ r+ai

r
A · d�

)
ψ

†
r+ai ,s

ψr,s + H.c. (1)

The pairing term for an s-wave superconductor is as follows:

�̂s-wave =
∑

r

�(r)ψ†
r↑ψ

†
r↓ + H.c., (2)

where �(r ) = �0(r ) exp(i�(r )) with �0(r ), �(r ) as real
scalar fields and ai = ai τ̂ i (with i = 1, 2) are the lattice
vectors. For spinless fermions, we omit one spin component
from the hopping term and take the lowest angular momentum
p-wave pairing,

�̂p-wave =
∑
r,i

�p±ip(r, ai )ψ
†
r↓ψ

†
r+ai↓ + H.c., (3)

where �p±ip(r, a)=�0(r ) exp(±i Arg(a)) exp(i�(r )) exp
( i

2

∫ r+a
r ∇� · d�) and Arg(r ) = Arg(x + iy). The super-

conducting order parameter is defined in such a way that the
U(1) gauge invariance is respected [13].

We recall that vortices are encoded as nodes of the order
parameter, characterized by a finite quantized winding number
of the phase �(r ) [17]. In order to form a vortex lattice we tile
the plane with a MUC. The MUC is chosen to enclose an
even number of vortices. Thus, each vortex within the MUC
constitutes a sublattice. The superconducting phase �(r ) can
be written as a sum over contributions of such vortex (or
antivortex) sublattices �(r ) = ∑Nv

i=1 siθ (r − r i ), where si =
+ (si = −) for vortices (antivortices) and r i is the position
of the ith sublattice with respect to the origin. Within each
sublattice, the phase θ (r ) can be expressed by summing the
contributions of all vortices in the sublattice,

θ (r ) = lim
M→∞

[
2M∑

m,n=−2M

Arg(r − mτ 1 − nτ 2) mod 2π

]
,

(4)

where τ i = qiai τ̂ i are the vectors spanning the MUC, com-
posed of q1 × q2 atomic sites. Using complex variables
z = x + iy, we have

θ (z) = Im

{
Log

[
iϑ1

(
z

τ2
,−τ1

τ2

)]
− 2iz2

τ1τ2
arctan

(
iτ1

τ2

)}
,

(5)

where τi is the complex representation of the vector τ i .
It is important to note that, although the resulting function

θ (r ) admits the correct windings at the positions of the vortices,
it is generally nonperiodic on the MUC. Therefore, using this
summation for taking PBCs for a single MUC (a torus) is
unsafe.

IV. LATTICE PERIODIC GAUGE

We proceed by taking a gauge transformation
that renders the order parameter and the hopping
amplitudes periodic in the MUC A → A + 1

2∇rχ, � →
� exp(iχ ), ψrs → exp(iχ/2)ψrs . We note that the
supercurrent J ∝ 1

2∇r� − A is periodic in the two

magnetic lattice vectors τ i and thus
∫ r+τ i

r J · d�

is similarly doubly periodic. Therefore, we can always
choose χ (r ) so that the fields �′(r ) = �(r ) + χ (r ) and∫ r+τ i

r (A + 1
2∇rχ ) · d� are periodic (mod 2π ) on the lattice

sites rm,n = (m/q1)τ 1 + (n/q2)τ 2. We now show that there
exists a gauge that fulfills the conditions above for a MUC
composed of q × (q + 1) atomic sites for which q2 − q1 = 1.
For a general vortex lattice, using the same notation as for
�(r ) above, we write χ (r ) = ∑Nv

i=1 siφ(r, r i ) where φ(r, r i )
is written in terms of complex variables as

φ(z, zi ) = 2 Re

[
(z − zi )2

τ1τ2
arctan

(
iτ1

τ2

)]
+ qπ Re

(
z2

τ1τ2

)

− (q + 1)π
Im2(z/τ2) Re(τ1/τ2)

Im2(τ1/τ2)

− qπ
Im2(z/τ1) Re(τ2/τ1)

Im2(τ2/τ1)
+ π

Im(z/τ1)

Im(τ2/τ1)

+
[

2π Re

(
zi

τ2

)
− π

]
Im(z/τ2)

Im(τ1/τ2)
. (6)
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The resulting phase function �′ is now doubly periodic
as required. Furthermore, integrating the supercurrent J(r )
around the MUC reveals that

0 =
∮

MUC
J · d� ∝ Nw�0 −

∮
MUC

A · d�, (7)

where �0 = h/(2e) = π is the superconducting magnetic flux
quantum and Nw = ∑Nv

i=1 si is the total winding for the vortices
in the MUC. Due to the Dirac quantization condition [19],
requiring that � = n(h/e) with n ∈ Z when taking PBCs on
A, Nw must be an even number.

V. THE ALMOST ANTISYMMETRIC GAUGE

Our next step is to find a complementary vector field. Due
to the periodicity of the supercurrent, the vector potential is
required to fulfill the condition,

A(r + τ i ) = A(r ) + 1

2
∇[�′(r + τ i ) − �′(r )]. (8)

We now introduce the AAG that is designed to generate a
homogeneous magnetic field and obey Eq. (8) and is given
by

A= 2�0p

a1a2 sin2(α1 − α2)

[
(r × τ̂ 1) × τ̂ 2

q + 1
+ (r × τ̂ 2) × τ̂ 1

q

]
,

(9)

where αi = Arg τi and p ∈ Z mod q(q + 1).
The AAG is also useful in other contexts. For example,

if one is interested in solving the Hofstadter problem [20]
with high-flux resolution, it is obtained by considering a
rectangular lattice of size q × (q + 1) and choosing an AAG
A(r ) = 2�0p( y

q+1 , x
q

) with p = 1, 2, . . . , q(q + 1). The flux

per unit cell is then 2�0p

q(q+1) , and thus the flux through the
entire 2D system is 2�0p. In the standard procedure using
the Landau gauge, the flux through the entire 2D area can
only take values from a narrow and sparse range 2�0pq with
p = 1, 2, . . . , q + 1.

VI. ELECTRONIC BAND STRUCTURE OF A
VORTEX LATTICE

We now elucidate the quasiparticle energy dispersion for
the pertinent BdG Hamiltonian, which is depicted in Fig. 2.
Consider a vortex lattice made of N1 × N2 MUCs with q1 × q2

atomic sites in each cell, so in total, the system consists of
L1 × L2 sites (Li = Niqi). The Hamiltonian of the vortex
lattice in the BdG representation is written as Ĥ = �†HBdG�,
where HBdG is the Hamiltonian density. For s-wave supercon-
ductors, � ≡ (ψ↓, ψ

†
↑)T where ψs with s ∈ {↑,↓} is an L1L2

component spinor of spin s fermion annihilation operators. For
p-wave superconductors, the index s indicates particle and hole
subspaces.

Next, we introduce the discrete translation operators along
the two lattice directions i = 1, 2,

Ti : ψr,s −→ ψ(r+τ i )mod Niτ i ,s , (10)

which satisfy [T1, T2] = 0 and [HBdG, Ti] = 0. Clearly, the
eigenvalues of Ti are exp (i2πni/Ni ) with ni = 1, 2, . . . , Ni .
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FIG. 2. (Top) Quasiparticle bands as a function of coherence
length ξ for a pinned vortex lattice in a p-wave superconductor.
The magnetic unit cell contains 10 × 11 sites and two vortices that
are pinned on its diagonal, partitioning it in a ratio of 1:2:1. We
take t = |�| = μ = 1. (Bottom) The quasiparticle band structure for
ξ = 2.5. We observe Landau levels at high energies and Caroli–de
Gennes–Matricon states below the gap, including the band generated
from zero-mode tunneling [18].

The Bloch theorem is employed by introducing q1 × q2 sub-
lattice wave functions,

ϕk,s (r ) = 1√
N1N2

∑
R

exp(ik · R)|R + r, s〉, (11)

where R ≡ Rm1,m2 = m1τ 1 + m2τ 2 denotes the positions of
the MUCs and k ≡ kn1,n2 = 2πn1

N1|τ 1| τ̂ 1 + 2πn2
N2|τ 2| τ̂ 2. The Hamil-

tonian within a given sublattice is defined as

Hk(r, s; r ′, s ′) = 〈ϕk,s (r )|HBdG|ϕk,s ′ (r ′)〉. (12)

In this notation, the particle-hole symmetry of each block takes
the form �1H

∗
−k�1 = −Hk with �1 = σ1 ⊗ Iq1q2 . The block

Hk=0 corresponds to a single MUC with PBCs. Technically, Hk

is obtained from H0 just by varying the boundary conditions
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FIG. 3. Average anomalous charge response cxy vs chemical
potential μ for different coherence lengths ξ . The p-wave super-
conductor has a magnetic unit cell of 40 × 41 sites t = |�| = 1. In
addition, we pinned two vortices on the magnetic unit cell diagonal,
partitioning it in a ratio of 1:2:1.

as follows:

H0(r, s; r + τ i , s
′) → H0(r, s; r + τ i , s

′) exp (−ik · τ i ),

(13)

for any r on the boundary of the MUC.

VII. THE ANOMALOUS CHARGE RESPONSE
FUNCTION cx y

In previous studies of bulk p-wave superconductors, it was
noted that cxy is not quantized [13,21,22]. We now calculate cxy

in the presence of finite-size vortices and discover, remarkably,
that cxy contains a universal quantized contribution.

The anomalous charge response is exposed in the effective
action of a p-wave superconductor through the appearance of
a partial Chern-Simons (pCS) term [4,9],

SpCS = ±cxy

∫
d r dt at (∇ × a)z, (14)

where aμ = Aμ − ∂μ�/2, μ ∈ {t, x, y}, and the sign corre-
sponds to the superconductor chirality px ± ipy . Thus, in

analogy with the Streda formula [23], the following relation
holds [13]:

cxy (r ) = ±∂ρ(r )

∂Bz

∣∣∣∣
Bz=0

, (15)

where ρ(r ) = δSeff/δat (r ) = 〈gs| ∑s ψ
†
r,sψr,s |gs〉, |gs〉 is the

superconducting ground state and Bz = (∇ × a)z is homo-
geneous at the lattice sites. This formula relates the density
response to an infinitesimal external magnetic field. However,
any variation of the magnetic field imposes a change in the
superconducting phase in order to maintain periodicity of
the supercurrents. Thus, as we now explain, the physical
scenario here requires a modification of the Streda formula.
The minimal variation of the magnetic field is a single flux
quantum (over the entire system), leading to the nucleation
of two vortices. Similarly, when an opposite magnetic field is
applied, two antivortices are nucleated. Therefore, the deriva-
tive operation in the Streda formula for calculating density
response implies a simultaneous flip of magnetic field as well
as vortex chiralities. This is equivalent to a chirality flip of
the order parameter (from px ± ipy to px ∓ ipy). The above
procedure is also necessary as two opposite chirality states
admit roughly the same spectrum so that the density response
can be considered as a small perturbation.

With this insight in mind, it is now possible to use Eq. (15)
and numerically calculate the spatial average of cxy (r ) as
a function of μ as shown in Fig. 3. The results are then
compared with the analytical expression of cxy from the
effective action governing the low-energy dynamics of the
p-wave superconductor [13,21,22].

It is found that the two predictions overlap in the trivial
phases except that the numerics predict a slight dependence
on ξ but not on |�| as shown in Fig. 4. Moreover, in all
phases, cxy does not depend on the number of MUCs that
form the vortex lattice. Hence, cxy can be calculated from a
single MUC corresponding to k = 0. Another property of cxy

is that its average value within the MUC depends only slightly
on its dimensions (as long as the vortices are well separated).
Thus, one may expect to obtain cxy for Bz = 0 by probing the
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FIG. 4. Average anomalous charge response cxy vs chemical potential μ and order parameter |�| for a p-wave superconductor with a
magnetic unit cell of 40 × 41 sites t = 1 and ξ = 2.5. The modified Streda formula (Numerical) is compared with the prediction of the
effective low-energy theory of the p-wave superconductor (Analytical). In addition, we pinned two vortices on the magnetic unit-cell diagonal,
partitioning it in a ratio of 1:2:1.
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FIG. 5. Average anomalous charge response cxy vs chemical
potential μ for a planar p-wave superconductor. The magnetic unit-
cell average of cxy is crudely separated into contributions from the
vortices and contributions from the bulk. For comparison, we also
present the field-theory prediction of cxy . Here t = |�| = 1 and
ξ = 2.5. In addition, the magnetic unit cell contains 40 × 41 sites
and two vortices that are pinned on its diagonal, partitioning it in a
ratio of 1:2:1.

density response of a small piece of the superconductor with
PBCs for the application of minimal magnetic flux � = h/e

and a compensating vortex pair (placed arbitrarily within the
superconductor). This is indeed what we observe, and the result
matches extremely well with the field-theoretical prediction
in the trivial phase. Remarkably, in the topological phases
(0 < μ < 8) there is a sizable discrepancy between our predic-
tions and those based on field theory. Since the charge accumu-
lated at the vortex core (referred to as vortex charging) depends
on the angular momentum of the Cooper pairs, it is determined
by an interplay among the superconductor chirality, the vor-
ticity, and the quantum phase [24]. We now show that this
discrepancy can indeed be traced to a universal vortex charging
effect.

To decipher the origin of cxy , we perform two kinds of
spatial and spectral cuts. First, we crudely separate the vortex
cores at distances r � ξ from the bulk and average cxy in each
region independently to find their respective contributions; in
the bulk, both theories yield similar results, whereas at the
cores, the numerical results expose steps of ± 1

8π
as shown

in Fig. 5. Second, we separate the charge in the vortices into
contributions of each Bogoliubov quasiparticle and take into
account those within the energy gap �Qcore = ∫∫

core d r �ρ̃r

with ρ̃r = 1
2

∑
0<ε<Egap

(|vr,ε |2 − |ur,ε |2). We then find that
the most significant contribution to cxy arises from the

Caroli–de Gennes–Matricon states [25]. This demonstrates
that the universal contribution to cxy arises from the vortex
core and, specifically, from vortex bound states. On the other
hand, within the field-theory formalism, the vortices are treated
as point singularities, which may explain the discrepancy.
Although it was observed in Ref. [24] that vortices with
opposite vorticities accumulate different charges, here we show
that the relative accumulated charge for opposite vorticities
is a universal quantity, which appears to be proportional to
the Chern number of the superconductor. For consistency, we
checked that s-wave and dx2−y2 -wave superconductors have
vanishing anomalous charge responses.

VIII. SUMMARY

In this paper, the nature of the PKE and the order param-
eter in the p ± ip superconductor Sr2RuO4 is analyzed. A
smooth gauge is introduced, that can be used in conjunction
with Bloch’s theorem to diagonalize BdG Hamiltonians for
infinite superconductors in various periodic vortex states. The
dispersion of quasiparticle energies for such vortex states with a
finite vortex core size is calculated beyond previous numerical
studies, and the occurrence of midgap states is demonstrated
as the size of the core is increased.

Employing the same diagonalization algorithm, and modi-
fying the Streda formula, the anomalous charge response cxy

is calculated in the absence of vortices. The structure of cxy

is then used to identify the quantum phases of the pertinent
systems. Our results indicate that in p-wave superconductors
subjected to PBCs, cxy is calculable by their response to an
applied weak magnetic field and the nucleation of a vortex pair.
On the other hand, the average value of cxy within the bulk is
only weakly affected by the size of the vortices’ cores or their
positions in the MUC. It is then reasonable to perceive that the
discrepancy with results based on the field-theory approach to
p-wave superconductors is attributed to vortex charging, which
occurs only in vortices with finite core radii.

Finally, it is worth expressing our hope that the AAG
introduced here and the ensuing diagonalization algorithm
will serve as useful tools in the study of similar systems, such
as the Hofstadter butterfly in the presence of disorder [20].
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Chapter 3

Summary and discussion

In this dissertation we derived the effective action of a chiral p-wave superconductor. In our theory

the entire vortex contribution is accounted for by gauge fields, in contrast to previous works that

used a phenomenological description[51, 50]. In addition, we explicitly evaluated the Abelian

part of the exchange matrix of vortices in the 2D chiral spinless p-wave superconductor. We also

introduced innovative ways to measure and control solid-state Majorana fermions. Finally, we

considered the effect of the vortices on the electromagnetic response of the system, discovering

that, when the vortices possess a finite core, the formation of CdGM states and sub-gap bands

induced by tunneling between bulk vortices plays an important role. This discovery is highly

relevant for modeling and implementing quantum information protocols whose reliability can be

examined under various situations, for example, in the presence of disorder and impurities.

Effective theory of vortices in two-dimensional spinless chiral p-wave superfluids. An effective

action depicting the dynamics of vortices in a superfluid was derived from a microscopic theory.

More importantly, we demonstrated how to produce the missing CS term, which describes the

Abelian part of the statistics of the vortices, in the action. Moreover, this model enables us to

predict the conditions under which the Abelian phase will deviate from its universal value. We

found that the exchange phase is universal in the chiral p-wave superconductor when screening

37



is present and the distance between vortices is much greater than both the coherence and the

penetration lengths, although substantial non-universal deviations occur for a neutral superfluid.

However, the non-Abelian sector, attributed to the zero-modes, is missing from the model and

further work is needed to elaborate its origin.

Signatures of the topological spin of Josephson vortices in topological superconductors. We

considered a setup consisting of a Josephson vortex trapped in an annular topological supercondut-

ing junction, which encloses both an electrical charge andmagnetic flux. The vortex was driven into

a persistent motion through an Aharonov-Casher effect. The dynamics of the topological Josephson

vortex were governed by a modified Sine-Gordon Hamiltonian, where the regular bosonic degrees

of freedom couple with the low lying Majorana fermions. In the limit of vanishing tunneling across

the junction, we analyzed the difference in momentum between the inner and outer edges, as the

boundary conditions are exchanged between periodic and anti-periodic as depicted in Fig.(3.1).

We found that the ground-state contribution to the momentum difference is ±2π
L × 1

16 , where
1

16 is

the topological spin of the Josephson vortex. Moreover, the universal phase depends solely on the

parity of the number of vortices enclosed by the junction. This phase is 2π times the topological

spin of the Josephson vortex and is proportional to the Chern number. We proceeded by showing

that our results hold true even when tunneling occurs across the junction.

The energy spectrumof the Josephson vortex, in the presence of an externally-inducedAharonov

Casher charge Q and N vortices within the central region, was obtained. It revealed that persistent

motion of the topological Josephson vortex can be manipulated by two knobs, Q and N mod 2.

In contrast, a non-topological Josephson vortex remains unaffected by N . Since both the velocity

of the persisting soliton and the voltage across the junction are proportional to the gradient of the

energy, V ∝ vs ∝ ∂QE , the topological spin can be measured through its effect on the junction’s

voltage characteristics. We note that our platform and the topological spin, in particular, can be

exploited to form the sought-after π
8 magic phase gate, necessary to complete a set of universal

quantum gates.

How vortex bound states affect the Hall conductivity of a chiral p ± ip superconductor. We
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presented a systematic way to construct analytically the phase of a complex order parameter for

any spatial configuration of vortex defects within a 2D magnetic unit cell with periodic boundary

conditions. This order parameter is accompanied by a gauge for the vector potential, allowing

access to the highest resolution of its corresponding magnetic field. Since both the order parameter

and hopping amplitudes are periodic at lattice sites, we applied Bloch’s theorem in order to perform

an exact diagonalization of an infinite p-wave superconductor in various vortex states. Thus, we

accessed the dispersion of quasi-particle states and studied the formation of Caroli-de Gennes-

Matricon states and sub-gap bands induced by tunneling between vortices.

In addition, based on our field theory we generalized the Streda formula to the case of p-wave

chiral superconductors. Then, we used the Streda formula to calculate the anomalous charge

response, cxy at zero magnetic field and zero vorticity. Due to the periodic boundary conditions the

superconductor was probed by the minimal magnetic flux,Φ = ±h/e and a compensating vortex

pair (placed arbitrarily within the superconductor). In the topological phase (0 < µ < 8) we found
that the results of the Streda formula differ from those predicted by the field theory. The discrepancy

was traced to the accumulated charge inside the vortices core. Moreover, our study revealed that

the formation of CdGM states plays an important role in the charge accumulation process.

Figure 3.1: Topological annular Josephson junction. The boundary conditions of the Majorana

edge states depend on the parity of the vortices in the inner plate of the junction.
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An accurate estimation of cxy is necessary for determining whether the measurements of the

Kerr angle in Sr2RuO4 provide evidence for triplet, odd-parity pairing, and chiral order. However,

a more realistic lattice model should be used to account for the superconductor multibands if a

quantitative comparison is to be made.
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1 Introduction

In a p-wave superconductor, the quasi-particles which exhibit non-Abelian statistics are flux h/2e vortices [10, 1]. We

present the effective action of such a superconductor [2, 11] and show that when calculations are performed in a certain

gauge, they do produce a non-trivial Chern-Simons-type (CS) term.

The Bogoliubov–de Gennes Hamiltonian for a spinless p-wave superconductor is [13, 12]

H =
∫
R

dt
∫
R2

dx ψ†x,t

( (p − A)2
2m

− µ − A0

)
ψx,t +

1
2

[
ψx,t

{
∆̄, px + ipy

}
ψx,t + h.c.

]
, (1)

where p = −i∇ is the momentum, ψ, ψ† are the electron field operators, ∆ is the order parameter and may depend on

space and time, A(r) is the electromagnetic vector potential. Here and in the following we take e = ~ = 1. The action

Appendix A

The effective action of a two-dimensional
chiral p-wave superconductor with
single-quantum vortices
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functional corresponding the Hamiltonian eq. (1) is

S (
φ̄x,t, φx,t

)
=

∞∫
−∞

dt
∫

R2
dx

[
φ̄x,t (i∂t ) φx,t −H

(
φ̄x,t, φx,t

) ]
(2)

where the fermion operators appearing in Eq. (1), ψ†x,t and ψx,t were replaced by Grassmann fields, which we denote

by φ̄x,t and φx,t , respectively. The partition function of the system is given by the sum over all possible Grassmann

field configurations, weighted by the action functional of the fields -

Z =
∫
D(η̄x,t, ηx,t )eiS(η̄x, t,ηx, t ) (3)

The action is quadratic in the Grassmann fields, and assisted by the Nambu notation the partition function can be

integrated out straightforwardly. We use Nambu notation

ηx,t =
©­«
φx,t

φ̄x,t

ª®¬
and η̄x,t =

(
φ̄x,t, φx,t

)
. (4)

Writing the action in terms of Nambu spinors gives

S (
η̄x,t, ηx,t

)
=

1
2

∞∫
−∞

dt
∫

R2
dx

[
η̄x,tG−1ηx,t

]
, where G−1 = i∂t −H (5)

Explicitly, The inverse Green matrix in the presence of electromagnetic fields is

G−1 =
©­«

i∂t + A0 − 1
2m (−p + A)2 + µ − {

∆, px − ipy
}

−
{
∆, px + ipy

}
i∂t − A0 +

1
2m (p + A)2 − µ

ª®¬
,∆ =

∆0
2

eiθ(x,t). (6)

and in terms of the Pauli matrices, The inverse Green matrix with electromagnetic fields is

G−1 = i∂t − τ3

( (p − τ3A)2
2m

− µ − A0

)
− τ1{∆, px} − τ2{∆, py} (7)

where τi are the Pauli matrices and the order parameter is ∆ = ∆0
2 eiτ3θ(x,t).

The functional integration over a Gaussian of real Grassmann fields is

Z =
∫
D(η̄x,t, ηx,t )eiS(η̄x, t,ηx, t ) =

∏
x,t

Pf
(
G−1
x,t

)
= exp

[
1
2
Tr log

(
G−1
x,t

)]
, (8)

where TrA stands for
∑

x,t 〈x, t |trA|x, t〉 and tr is the trace over the 2 × 2 Nambu space [6]. The full derivation of the

integral’s solution is given in Appendix A.
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2 The gradient expansion of the effective action for a 2D p-wave supercon-

ductor

The partition function is invariant under a similarity transformation of the inverse Green function that keeps the modu-

lus of the Jacobian unity. Any transformation should keep the particle-hole symmetry, which follows from the fact that

{Ξ,H} = 0 where Ξ = τ1K with K being complex conjugation operator and τ1 being Pauli matrix in Nambu space.

In addition, the transformation is required to be single-valued in order to avoid the need to introduce branch cuts for

the Grassmann fields. Also, we would like that the transformation of G−1 produce only terms with powers of the phase

function θ(x, t), in order simplify the gradient expansion of the effective action. Thus, the transformation, U, would

have the following properties:

1. To maintain particle-hole symmetry, the right spinor is the transpose conjugate of the left spinor,

U · ηx,t =
[
η̄x,t · U−1]† .

2. For particle-hole symmetry, the first element of the spinor is the conjugate of the second element,

Ψ̄ = (U · ηx,t )Tτ1

3. A unity modulus Jacobian implies that | det(U) |= 1, so U is unitary matrix which have the general form

U = eiα+βτ1+γτ2+δτ3

4. The transformation should eliminate from the off-diagonal elements of G the dependence on the order parameter

field, θ(τ, x), from the phase function.

5. The transformation should be single-valued.

The following transformation, which is built from a product of a discrete and continues transformations, fulfills the

requirements above:

U = λe−iτ3θ/2 (9)

The first part is λ = eiγ(t,x), where γ is function that depends, in general, on space and time and gives 0 or π. So the

spinors transform by the discrete transformation, φx,t −→ −φx,t . The second part is exp [−iτ3θ/2], where it should be
effectively evaluated as a power series for the exponential function, with ordinary powers replaced by matrix powers.

Under this transformation the spinor transforms by a continuous transformation, φx,t −→ φx,te−iθ(t,x)/2.
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We renotate the Green function after the transformation as:

G−1 =
©­«

i∂t + a0 − b0 − 1
2m (−p + a − b)2 + µ −∆

(
px − ipy

)
− ∆ (

bx − iby
)

−∆
(
px + ipy

)
− ∆ (

bx + iby
)

i∂t − a0 − b0 +
1

2m (p + a + b)2 − µ
ª®¬

(10)

where a = A − ∂xθ, a0 = A0 − ∂tθ, b = ∂xγ, b0 = ∂tγ and ∆0 = 2|∆| (from hereby we omit the zero subscript).

The derivation of the transformed Green’s matrix can be found in Appendix G.

The similarity transformation is actually a gauge transformation which leaves the Hamiltonain invariant but alter

the auxiliary fields (∆,∆) as ∆ −→ eiθ∆.

Rewriting the Green matrix in terms of Pauli matrices gives -

G−1 = i∂tτ0 + (a0 − b0τ3) τ3 − 1
2m
(−p τ3 + a − b τ3)2 τ3 + µ τ3 + ∆0

(
px + bx

)
τ1 + ∆0

(
py + by

)
τ2

Now we divide the expression into the vacuum inverse Green matrix plus corrections that depend on the fields -

G−1 = iτ0∂t − τ3

(
px

2 + py
2

2m
− µ

)
− ∆

(
px τ1 + py τ2

)
︸                                                             ︷︷                                                             ︸

G−1
0

−
(
−a0 τ3 −

{px, ax} + {py, ay}
2m

τ0

)
︸                                        ︷︷                                        ︸

χ1

(11)

−
{px, bx} + {py, by}

2m
τ3︸                       ︷︷                       ︸

χ2

−∆ (
bx τ1 + by τ2

)
︸                ︷︷                ︸

χ3

− b0 τ0︸︷︷︸
χ4

−
a2
x + a2

y

2m
τ3︸      ︷︷      ︸

χ5

− −axbx − ayby
m

τ0︸                ︷︷                ︸
χ6

−
b2
x + b2

y

2m
τ3︸       ︷︷       ︸

χ7

This allows us to write the effective action as -

−iS (a, a0, b, b0) = −1
2
Tr log

(
G−1

0 − χ
)
= −1

2
Tr log(G−1

0 ) −
1
2
Tr log (1 − G0χ) ≈ (12)

Const +
1
2
Tr

[
1
2
G0 · Ξ · G0 · Ξ + G0 · χ

]

The Green’s matrix is

G0 =
−iτ0∂t − gp · τ

∂2
t + g2

p

, (13)

where gp = (∆px,∆py, ξp), ξp =
p2

2m − µ, τ = (τ1, τ2, τ3), χ ≡
7∑
i=1

χi and Ξ =
4∑
i=1

χi .

To derive the Green’s matrix we used the fact that every 2D matrix of the form A = iaτ0 + bτ1 + cτ2 + dτ3 has an

inverse matrix A−1 = −iaτ0+bτ1+cτ2+dτ3
a2+b2+c2+d2 .

This expansion into a series is called "the gradient expansion" since we assume that the electromagnetic fields and

the gradients of the order parameter are small [8, 11, 2].
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3 Evaluating the first order of the gradient expansion

We are interested in evaluating the trace of single current terms G0χi , so we start by examining the trace for the

combination G0(χ1 + χ6) in order to study how it transforms to momentum space 1 -

1
2

∫
dx
dt 〈x, t

��G0
(
χ1 + χ4

) �� x, t〉 = 1
2

∫
dx
dt 〈x, t

���G0

(
−τ3a0 − τ0

{p,a}
2m − τ0

a ·b
m

)��� x, t〉 =
1
2

∫
dx,dt
dk,dω 〈x, t |G0 | k, ω〉〈k, ω

���(−τ3a0 − τ0
1

2m (2a · p − i∂xa) − τ0
a ·b
m

)��� x, t〉 =
1
2

1
(2π)3

∫
dx,dt
dk,dω G0(k, ω)

(
−τ3a0 − τ0

1
2m (2k · a − i∂xa) − axbx+ayby

m τ0

)
=

1
2

1
(2π)3

∫
dk,dω,
dq,d f G0 (k, ω)

(
(−τ3a0+ − τ0

k ·a+
m )δq,0δf,0 − τ0

a+ ·b−
m

)

(14)

where

G(k, ω) = −τ0ω − gk · τ
−ω2 + g2

k

, g2
k
= ξ2

k
+ ∆2k2, gk = (∆kx,∆ky, ξk ), ξk =

k2

2m
− µ and

∫
dx
dt ≡

∫
R2

dx

∞∫
−∞

dt

and we donate the transformed fields as a± = a(±q,± f ) and b± = b(±q,± f ). Also should be mentioned that in the

last step in Eq. (14) we used Fourier transform identities which are derived in Appendix B.

Thus, when evaluating the trace of terms in the effective action with the form tr
(∫

dx
dt 〈x, t

��G0χi

�� x, t〉) , the trace
can always be transformed to momentum-frequency space, tr

(∫
k,ω
q, f G0 (k, ωn) χi(q, f , k)

)
. Where currents that are

proportional to {p, a(x, t)}, a0(x, t) and a·b become proportional to 2k ·a+δq,0δf ,0, a0+δq,0δf ,0 and a+ ·b− ,respectively.

Applying these rules to transform all the first order corrections in the action into the momentum-frequency space,

yields:

1
2

∫
dx
dt tr〈x, t |G0 χ | x, t〉 = 1

2
1
(2π)3

∫
dk,dω
dq,d f tr

(
G0 (k, ω) · τ3

(
−a0+δq,0δf,0 +

a+·a−
2m

+
b+ · b−

2m

))
=

∫
dq
d f in

(
−a0+δq,0δf,0 +

a+·a−
2m

+
b+ · b−

2m

)
= in

∫
dx
dt

(
−a0(x, t) + a2(x, t)

2m
+

b2(x, t)
2m

)
(15)

The corrections χ6 and the second term in χ1 do not contribute to the first order of the gradient expansion since the

trace and the integration over frequency, ω eliminated these terms. The corrections χ2, χ3 and χ4 do not contribute

either, because, although they have the same form as χ1, the fields are derivatives (of γ). Thus, the Fourier transform

1The Fourier Transform convention that we follow is 〈x, t |k, ω〉 = exp (ik ·x)
2π

exp (−iωt )√
2π
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over these terms is zero.

All that’s left is to evaluate the sum over k and ω, meaning computing in ≡ 1
2 tr

(
1
(2π)3

∫
dk
dω G0(k, ω)τ3e−iτ3η

)
. The

only elements which we need in order to preform the trace in the expression are the diagonal ones. The integration

over the momentum of the first (second) element is done by counting only poles in the upper (bottom) half-plane.

Thus, the elements were multiplied by an exponents which, due to convergence issues, forces us to choose the right

integration contour without altering the result. The sum over poles in the upper (bottom) half-plane may be interpreted

as summing over particles (holes).

The expression for the particles and holes can be written as

in± =
i

8π2

∫
R2

dk n(k)± = 1
2

1
(2π)3

∫
R2

dk

∞∫
−∞

dω
−ω ∓ ξk

−ω2 + g2
k
− iη

e±iηω (16)

Where ξk ≡ k2

2m − µ, g2
k
≡ ξ2 + ∆2k2 and n should be understood as density of particles.

Starting from summing over ω yields

n(k)+ =
1

2πi

+∞∫
−∞

−ω − ξ
−ω2 + g2 − iη

eiηωdω = Res
( −ω − ξ
(λ + ω)(λ − ω) e

iηω,−λ
)
= (17)

lim
ω→−λ

(ω + λ) −ω − ξ
(λ + ω)(λ − ω) e

iηω =
λ − ξ

2λ
e−iηλ

and

n(k)− =
1

2πi

+∞∫
−∞

−ω + ξ
−ω2 + g2 − iη

e−iηωdω = Res
( −ω + ξ
(λ + ω)(λ − ω) e

−iηω, λ
)
= (18)

− lim
ω→λ
(ω − λ) −ω + ξ

(λ + ω)(λ − ω) e
−iηω = −λ − ξ

2λ
eiηλ

where λ ≡
√
g2
k
− iη.

We can always write λ2 = Ceiφ with C = (g4
k
+ η2)1/2 and φ = arctan(−η/g2

k
). Since Im(λ2) < 0, the phase φ

must be in the region−π ≤ φ ≤ 0. This implies that λ =
√

Ceiφ/2 lies in the forth quarter (and−λ in the second quarter).
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Taking the trace and integrating over momentum gives -

n = lim
η→0

n+ − n− =
1
2

1
(2π)2

∫
R2

dk
©­­«
1 − ξk√

ξ2
k
+ 2m∆2(ξk + µ)

ª®®¬
=

m
4π

+Λ∫
−µ

dξ

(
1 − ξ√

ξ2 + 2m∆2(ξ + µ)

)
=

m
4π

(
Λ + 2µ −

√
Λ2 + 2m∆2(Λ + µ) + m∆2 log

[
1 +

Λ +
√
Λ2 + 2m∆2(Λ + µ)

m∆2

])
(19)

where Λ is some cut-off that depends on the nature of the system. It will become useful to introduce the equilibrium

electron density as a function of the momentum cut-off, Λk .

n =
1

4π

∫ Λk

0
dkk

©­­«
1 − ξk√

ξ2
k
+ 2m∆2(ξk + µ)

ª®®¬
(20)

x

y

−λ

λ

x

y
−λ

λ

Figure 1: The contours of integration to be used in zero temperature calculations for particles (left) and hole (right).

4 The second order of the gradient expansion

We are interested in evaluating the trace of the second order of the gradient expansion. We start by examining the trace

for the combination G0χ1Gχ1 in order to study how they transform to frequency-momentum space -

1
4

∫
dx0
dt0

tr
(〈x0, t0 |G0χ1G0χ1 |χ0, t0〉

)
=

1
4

∫
dx0,dt0,dx1,dt1
dk,dω,dq,d f tr (〈x0, t0 |G0 |k0, ω0〉〈k0, ω0 |χ1 |x1, t1〉〈x1, t1 |G0 |k1, ω1〉〈k1, ω1 |χ1 |x0, t0〉) =

1
4

∫
dx0,dt0,dx1,dt1
dk,dω,dq,d f tr

(
e+i(x0−x1)(k0−k1)e+i(t0−t1)(ω1−ω0)

(2π)6 G0(k0, ω0)χ1(x1, t1, k0)G0(k1, ω1)χ1(x0, t0, k1)
)

(21)
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where G0(k, ω) =
−ωτ0 − gk · τ
−ω2 + g2

k

and χ1(x, t, k) = − τ0a0(x, t) − τ0
1

2m
(
2k · a(x, t) + i∂x1 a(x, t)

)

Continuing by integrating over the spatiotemporal coordinates yields:

1
4
tr

(
1
(2π)3

∫
dk1,dω1
dk0,dω0

G0 (k0, ω0) χ1 (k0 − k1, ω1 − ω0, k0) G0 (k1, ω1) χ1 (k1 − k0, ω0 − ω1, k1)
)

(22)

where the correction χ1 (k0 − k1, ω1 − ω0, k0) = −τ3a0 (k0 − k1, ω1 − ω0)

− 1
2m

τ0 (2k0·a (k0 − k1, ω1 − ω0) − (k0 − k1) a (k0 − k1, ω1 − ω0)) = (23)

−τ3a0 (k0 − k1, ω1 − ω0) − 1
2m

τ0 (k0 + k1) a (k0 − k1, ω1 − ω0)

Next, we change the variables of the sum from k0, k1, ω0 and ω1 to k = k0+k1
2 , q = k0 − k1, ω = ω1+ω0

2 and

f = ω1 − ω0, respectively. After the variables change, the contribution to the action takes the form

1
4
tr

(
1
(2π)3

∫
dk,dω
dq,d f G0

(
k +

q

2
, ω − f

2

)
χ1 (q, f , k) G0

(
k − q

2
, ω +

f
2

)
χ1 (−q,− f , k)

)
(24)

where G0(ω ∓ f
2
, k ± q

2
) =
−(ω ∓ f

2 )τ0 − gk± q
2
· τ

−(ω − f
2 )2 + g2

k+ q
2

and χ1(q, f , k) = −τ3a0(q, f ) − 1
m
τ0k ·a(q, f ).

Generally speaking, when transforming terms of the form tr
∫

dx
dt 〈x, t

��G0 χiG0 χj
�� x, t〉 to the momentum-frequency

space, the expressions can be simplified by switching to symmetric and anti-symmetric variables by a special unitary

transformation. After the transformation the corrections that are proportional {p, a(x, t)} and a0(x, t) become propor-

tional to 2k · a(q, f ) and a0(q, f ), respectively. Thus, the second order of the gradient expansion in terms of (2+1)

momentum-frequency vectors q ≡ (q,−q0) and k ≡ (k, k0) can be expressed as∫
q0dq κµ(q, q0)πµνκλλν(−q,−q0) (25)

where πµνκλ (q), the correlator2 between the µ component of the field κ and the ν component of the field λ, is given by

π
µν
κλ (q) =

1
4

1
(2π)3

∫
d3k tr

(
G(k + q

2
) jµκ (k)G(k −

q
2
) jνλ(k)

)
, (26)

where the Einstein summation rule is applied with κ, λ = a, b, µ, ν = 0, 1, 2 and the currents ja and jb are

ja = (−τ3,− kx
m τ0,− ky

m τ0), jb = (τ0,
kx
m τ3 + ∆τ1,

ky
m τ3 + ∆τ2). (27)

As shown in Appendix G, there is no coupling between the 3-vector fields a = (a, a0) and b = (b, b0). This statement

is based on the antisymmetry with respect to k of correlators integrand,

tr
(
G0(k + q

2
) ja(k)G0(k − q

2
) jb(k)

)
= −tr

(
G0(−k +

q
2
) ja(−k)G0(−k − q

2
) jb(−k)

)
. (28)
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The calculations can be further simplified by expanding the correlators up to the first order with respect to q. The

expansion of the effective action is only up to the second order of the fields a and b so there is no point to keep orders

higher than two in q. Explicitly, the expanded correlators are

Π
µν
κ (q) =

1
4

1
(2π)3 (1 + q · ∇q′)

[∫
d3k tr

(
G0(k + q′

2
) jµκ (k)G0(k − q′

2
) jνκ (k)

)] ����
q′=0

. (29)

5 Evaluating the zero order in q of the gradient expansion second order

The zero order in q of correlator Π
(0)µν
κ (q) in terms of G(0)

k
≡ G0(k) is

Π
(0)µν
κ (q) =

1
4

1
(2π)3

[∫
d3k tr

(
G(0)
k

jµκ (k)G(0)k
jνκ (k)

)]
(30)

where

G(0)
k
=
−τ0k0 − gk · τ
−k2

0 + g2
k

, g2
k = ξ

2
k + ∆

2k2 and gk = (∆kx,∆ky, ξk ) (31)

and the currents ja and jb are

ja(k) = (−τ3,− k1
m τ0,− k2

m τ0) =
(−τ3,−∂k1g3τ0,−∂k2g3τ0

)
jb(k) = (τ0,

k1
m τ3 + ∆τ1,

k2
m τ3 + ∆τ2) =

(
τ0, ∂k1 (g · τ), ∂k2 (g · τ)

) (32)

5.1 Intermezzo: The integration over k0

Fortunately, the calculation of the correlators involves only two types of integrals over the frequency, k0. These

integrals are

1
2πi

∞∫
−∞

ω2

(−ω2 + λ2)2 dω = Res
(

ω2

(λ − ω)2(λ + ω)2 ,−λ
)
= lim
ω→−λ

∂

∂ω

ω2

(λ − ω)2 = (33)

lim
ω→−λ

(
2ω

(λ − ω)2 +
2ω2

(λ − ω)3
)
= − λ

2

4λ3

2 In order to evaluate the correlators we must take a trace over various products of the Pauli matrices and the identity matrix. The following

identities may ease the calculation:

tr
(
τiτjτkτl

)
= 2δi j δkl + 2δilδ jk − 2δik δ j l, tr

(
τiτjτk

)
= εi jk2i and tr

(
τiτj

)
= 2δi, j .
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and

1
2πi

∞∫
−∞

1
(−ω2 + λ2)2 dω = Res

(
1

(λ − ω)2(λ + ω)2 ,−λ
)
= lim
ω→−λ

∂

∂ω

1
(λ − ω)2 = (34)

lim
ω→−λ

2
(λ − ω)3 =

1
4λ3

with λ ≡
√
g2
k
− iη. The results of the integrations do not depend in which half-plane the arc contour lies. Thus,

without ambiguity we choose to take the arc in upper half-plane

x

y

−λ

λ

Figure 2: The contour of integration which is used in the evaluation of dual current terms.

5.2 The correlator Πa

Π00
a =

1
4

1
(2π)3

∭
R3

d3ktr
(
G(0) j0

aG(0) j0
a

)
=

1
4

1
(2π)3

∭
R3

d3k tr

(
(k0τ0 + gk · τ)τ3(k0τ0 + gk · τ)τ3

(−k2
0 + g

2)2

)
=

1
4

1
(2π)3

∭
R3

d3k tr
©­­«
(k0τ0 + gk · τ)(k0τ0 + g−k · τ)(

−k2
0 + g

2
)2

ª®®¬
=

1
2

1
(2π)3

∭
R3

d3k
k2

0 + gk · g−k(
−k2

0 + g
2
)2 =

i
8

1
(2π)2

∬
R2

d2k
−g2 + gk · g−k

g3 = − i
16π2

∬
R2

d2k
g2

1 + g
2
2

g3 = − im
4

1
2π

∫ ∞

−µ
dξ

2m∆2(ξ + µ)
ξ2
k
+ 2m∆2(ξ + µ))3/2 = −

im
4π

(35)
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Π11
a =

1
4

1
(2π)3

∭
R3

d3ktr
(
G(0) j1

aG(0) j1
a

)
=

1
4

1
(2π)3

∭
R3

d3k tr

(
(∂k1g3)2(k0τ0 + g · τ)2

(−k2
0 + g

2)2

)
=




Now we use the identity

tr
[(k0τ0 + g · τ)2] =

2(k2
0 + g

2)



=

1
2

1
(2π)3

∭
R3

d3k
(∂k1g3)2(k2

0 + g
2)

(−k2
0 + g

2)2 =
iπ
8π

1
(2π)2

∬
R2

d2k
(∂k1g3)2(−g2 + g2)

g3 = 0

(36)

Π22
a =

1
4

1
(2π)3

∭
R3

d3ktr
(
G(0) j2

aG(0) j2
a

)
=

1
4

1
(2π)3

∭
R3

d3k tr

(
(∂k2g3)2(k0τ0 + g · τ)2

(−k2
0 + g

2)2

)
=




Now we use the identity

tr
[(k0τ0 + g · τ)2] =

2(k2
0 + g

2)



=

1
2

1
(2π)3

∭
R3

d3k
(∂k2g3)2(k2

0 + g
2)

(−k2
0 + g

2)2 =
iπ
8π

1
(2π)2

∬
R2

d2k
(∂k2g3)2(−g2 + g2)

g3 = 0

(37)

Π01
a = Π

10
a =

1
4

1
(2π)3

∭
R3

d3ktr
(
G(0) j0

aG(0) j1
a

)
=

1
4

1
(2π)3

∭
R3

d3k tr

(
(k0τ0 + g · τ)τ3(k0τ0 + g · τ)(∂k1g3τ0)

(−k2
0 + g

2)2

)
=

i
16

1
(2π)2

∬
R2

d2k tr
( [−g2τ3 + (g · τ)τ3(g · τ)]∂k1g3

g3

)
=




Now we use the identity

tr [(g · τ)τ3(g · τ)] = 0



= 0 (38)

Π02
a = Π

20
a =

1
4

1
(2π)3

∭
R3

d3ktr
(
G(0) j0

aG(0) j2
a

)
=

1
4

1
(2π)3

∭
R3

d3k tr

(
(k0τ0 + g · τ)τ3(k0τ0 + g · τ)(∂k2g3τ0)

(−k2
0 + g

2)2

)
=

i
16

1
(2π)2

∬
R2

d2k tr
( [−g2τ3 + (g · τ)τ3(g · τ)]∂k2g3

g3

)
=




Now we use the identity

tr [(g · τ)τ3(g · τ)] = 0



= 0 (39)
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Π12
a = Π

21
a =

1
4

1
(2π)3

∭
R3

d3ktr
(
G(0) j1

aG(0) j2
a

)
=

1
4

1
(2π)3

∭
R3

d3k tr

(
(k0τ0 + g · τ)2(∂k1g3)(∂k2g3)

(−k2
0 + g

2)2

)
=




Now we use the identity

tr
[(k0τ0 + g · τ)2] =

2(k2
0 + g

2)



=

1
2

1
(2π)3

∭
R3

d3k
(k2

0 + g
2)(∂k1g3)(∂k2g3)
(−k2

0 + g
2)2 =

i
8

1
(2π)2

∬
R2

d2k
(−g2 + g2)(∂k1g3)(∂k2g3)

g3 = 0 (40)

5.3 The correlator Πb

Π00
b =

1
4

1
(2π)3

∭
R3

d3ktr
(
G(0) j0

bG(0) j0
b

)
=

1
4

1
(2π)3

∭
R3

d3k tr

(
(k0τ0 + g · τ)τ0(k0τ0 + g · τ)τ0

−k2
0 + g

2

)
=

1
2

1
(2π)3

∭
R3

d3k
k2

0 + g
2(

−k2
0 + g

2
)2 =

i
8

1
(2π)2

∬
R2

d2k
−g2 + g2

g3 = 0

(41)

Π22
b =

1
4

1
(2π)3

∭
R3

d3k tr
(
G(0) j2

bG(0) j2
b

)
=

1
4

1
(2π)3

∭
R3

d3k tr

(
(k0τ0 + g · τ)∂k2g · τ

−k2
0 + g

2

)2
=

=
i

16
1
(2π)2

∬
R2

d2k tr
(−g2(∂k2g · τ)2 + (g · τ∂k2 g · τ)2

g3

)
=

=
i

16
1
(2π)2

∬
R2

d2k

−2g2(∂k2g)2 + tr

©­«
(g2∂k2g2 + g3∂k2g3)τ0 + i(g2∂k2g3 − g3∂k2g2)τ1

−ig1∂k2g3τ2 + ig1∂k2g2τ3

ª®¬
2

g3

=




Now we use the identity

tr
[(k0τ0 + g · τ)2]
= 2(k2

0 + g
2)



= − i

4
1
(2π)2

∬
R2

d2k
[ (g2∂k2g3 − g3∂k2g2)2 + (g1∂k2g3)2 + (g1∂k2g2)2

g3

]
=

− i
4
∆2

(2π)2
∬
R2

d2k

(
k2

1
m −

(
k2

2m − µ
))2
+

(
k1k2
m

)2
+ ∆2k2

2

g3

− i
4
∆2

(2π)2
∫ ∞

0
dk

∫ 2π

0
dα k

(
k2 cos2 α

m −
(
k2

2m − µ
))2
+

(
k

2m

)2
sin2 2α + (∆k)2 cos2 α

g3

= lim
Λk→∞


− i

8
∆2

2π

Λk∫
0

kdk

(
k4

2m2 + ∆
2k2 + 2µ2

)
(ξ2

k
+ ∆2k2)3/2


= −i

(
1
4
∂mn +

m∆2 + µ

8π

)
(42)
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Π11
b =

1
4

1
(2π)3

∭
R3

d3ktr
(
G(0) j1

bG(0) j1
b

)
=

1
4

1
(2π)3

∭
R3

d3k tr

(
(k0τ0 + g · τ)∂k1g · τ

−k2
0 + g

2

)2
=

=
i

16
1
(2π)2

∬
R2

d2k tr
(−g2(∂k1g · τ)2 + (g · τ∂k1 g · τ)2

g3

)
=

=
i

16
1
(2π)2

∬
R2

d2k

−2g2(∂k1g)2 + tr

©­«
(g1∂k1g1 + g3∂k1g3)τ0 + ig2∂k1g3τ1

+i(g3∂k1g1 − g1∂k1g3)τ2 − ig2∂k1g1τ3

ª®¬
2

g3

=




Now we use the identity

tr
[(k0τ0 + g · τ)2]
= 2(k2

0 + g
2)



= − i

4
1
(2π)2

∬
R2

d2k
[ (g2∂k1g3)2 + (g3∂k1g1 − g1∂k1g3)2 + (g2∂k1g1)2

g3

]
=




Switching between the coordinates indices 1 and 2 would not alter the integral

and would result an integrand which is identitical to the one of Π22
b




= lim
Λk→∞


− i

8
∆2

2π

Λk∫
0

kdk

(
k4

2m2 + ∆
2k2 + 2µ2

)
(ξ2

k
+ ∆2k2)3/2


= −i

(
1
4
∂mn +

m∆2 + µ

8π

)
(43)

One should notice that Π11
b
, Π22

b
and the corresponding terms from the first order of the gradient expansion cancels

each other as Λk →∞.

Π12
b = Π

21
b =

1
4

1
(2π)3

∭
R3

d3ktr
(
G(0) j1

bG(0) j2
b

)
=

1
4

1
(2π)3

∭
R3

d3k tr


(k0τ0 + g · τ)(∂k1g · τ)(k0τ0 + g · τ)(∂k2g · τ)(

−k2
0 + g

2
)2


=

i
16

1
(2π)2

∬
R2

d2k tr
[−g2(∂k1g · τ)(∂k2g · τ) + (g · τ)(∂k1g · τ)(g · τ)(∂k2g · τ)

g3

]
=

i
8

1
(2π)2

∬
R2

d2k
1
g3

[−g2(∂k1g3)(∂k2g3) + g1(∂k1g1)g2(∂k2g2) + g2(∂k1g1)g1(∂k2g2) + g1(∂k1g1)g3(∂k2g3)+

g3(∂k1g1)g1(∂k2g3) + g3(∂k1g3)g2(∂k2g2) + g2(∂k1g3)g3(∂k2g2) − g1(∂k1g3)g1(∂k2g3)

−g2(∂k1g3)g2(∂k2g3) + g3(∂k1g3)g3(∂k2g3)
]
=




All the terms in the integrad are odd

with respect to k1 or k2



= 0 (44)
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Π01
b = Π

10
b =

1
4

1
(2π)3

∭
R3

d3k tr
(
G(0) j0

bG(0) j1
b

)
=

1
4

1
(2π)3

∭
R3

d3k tr


(k0τ0 + g · τ)τ0(k0τ0 + g · τ)(∂k1g · τ)(

−k2
0 + g

2
)2


=

i
16

1
(2π)2

∬
R2

d2k tr
[−g2∂k1g · τ + (g · τ)2∂k1g · τ

g3

]
=

{
(g · τ)2 = g2τ0

}
= 0 (45)

Π02
b = Π

20
b =

1
4

1
(2π)3

∭
R3

d3k tr
(
G(0) j0

bG(0) j2
b

)
=

1
4

1
(2π)3

∭
R3

d3k tr


(k0τ0 + g · τ)τ0(k0τ0 + g · τ)(∂k2g · τ)(

−k2
0 + g

2
)2


=

i
16

1
(2π)2

∬
R2

d2k tr
[−g2∂k2g · τ + (g · τ)2∂k2g · τ

g3

]
=

{
(g · τ)2 = g2τ0

}
= 0 (46)

6 Evaluating the first order with respect to q of the gradient expansion

second order

The first order in q of the Green matrix can be written in following form

q · ∇q′ G0(k + q′

2
)
����
q′=0
=

q0
2 τ0 − k ·q

2m τ3 − q1
2 ∆τ1 − q2

2 ∆τ2

−k2
0 + g2

k

−
q0k0 +

(
∆2 +

ξk
m

)
k · q

−k2
0 + g2

k

G0(k) (47)

The second term in the sum, which we refer as G(1b), do no contribute to the correlator since the function that multiplies

G0(k) is anti-symmetric with respect to q, .i.e.

G(1b)
k,q

jµλG
(0)
k

jνλ = G(0)k
jµλG

(1b)
k,q

jνλ = −G(0)k
jµλG

(1b)
k,−q jνλ . (48)

Thus, the zero order in q of correlator Π
(1)µν
λ (q) can be written as

Π
(1)µν
λ (q) =

1
4

1
(2π)3 (q · ∇q′)

[∭
d3k tr

(
G0(k + q′

2
) jµλ (k)G0(k − q′

2
) jνλ(k)

)] ����
q′=0
= (49)

1
4

1
(2π)3

[∭
d3k tr

(
G(0)
k

jµλ (k)G
(1)
k,−q jνλ(k) + G(1)k,q

jµλ (k)G
(0)
k

jνλ(k)
)]

(50)

where

G(0)
k
=
−k0τ0 − gk · τ
−k2

0 + g
2

,G(1)
k,q
=

1
2

q0τ0 − q · ∇k (gk · τ)
−k2

0 + g
2

, gk = (∆kx,∆ky, ξk ) (51)
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and the currents ja and jb are

ja = −(τ3, ∂k1g3τ0, ∂k2g3τ0), jb =
(
τ0, ∂k1 (g · τ), ∂k2 (g · τ)

) (52)

6.1 The correlator Πa

Π
(1)01

a (q) = −Π(1)10
a (q) =

1
4

1
(2π)3

∫
d3k tr

(
G(1)
k,q

j0
aG(0)k

j1
a + G(0)k

j0
aG(1)k,−q j1

a

)
=

− 1
8

1
(2π)3

∭
d3k tr

(
(q0τ0 − q · ∇(gk · τ))τ3(τ0k0 + gk · τ)) − (τ0k0 + gk · τ)τ3(q0τ0 − q · ∇(gk · τ))

(−k2
0 + g

2)2 ∂k1g3

)
=




q0 is proportional to

(g · τ)τ3 − τ3(g · τ)
which has zero trace

and we integrate over k0.



=

i
32

1
(2π)2

∬
d2k tr

(
q · ∇(gk · τ)τ3(gk · τ) − (gk · τ)τ3(q · ∇(gk · τ))

g3 ∂k1g3

)
=




Here we use the identity

tr
(
τiτ jτk

)
= 2iεi jk



= −1

8
1
(2π)2

∬
d2k

εi j3
[(q1∂k1 + q2∂k2 )gj

]
gi∂k1g3

g3 =

− 1
8

1
(2π)2

∬
d2k

q2(∂k2g2)g1∂k1g3 − q1(∂k1g1)g2∂k1g3

g3 =




Due to the antisymmetry

with respect to k1




= −1
8

1
(2π)2

∬
d2k

q2(∂k2g2)g1(∂k1g3)
g3 = − q2

32π2

∬
d2k

∆2k2
1

mg3
k

= − q2
32π

∞∫
0

dk
∆2k3

mg3
k

= − q2
16π

(53)
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Π
(1)02

a (q) = −Π(1)20
a (q) =

1
4

1
(2π)3

∫
d3k tr

(
G(1)
k,q

j0
aG(0)k

j2
a + G(0)k

j0
aG(1)k,−q j2

a

)
=

− 1
8

1
(2π)3

∭
d3k tr

(
(q0τ0 − q · ∇(gk · τ))τ3(τ0k0 + gk · τ)) − (τ0k0 + gk · τ)τ3(q0τ0 − q · ∇(gk · τ))

(−k2
0 + g

2)2 ∂k2g3

)
=




q0 is proportional to

(g · τ)τ3 − τ3(g · τ)
which has zero trace

and we integrate over k0.



=

i
32

1
(2π)2

∬
d2k tr

(
q · ∇(gk · τ)τ3(gk · τ) − (gk · τ)τ3(q · ∇(gk · τ))

g3 ∂k2g3

)
=




Here we use the identity

tr
(
τiτ jτk

)
= 2iεi jk



= −1

8
1
(2π)2

∬
d2k

εi j3
[(q1∂k1 + q2∂k2 )gj

]
gi∂k2g3

g3 =

− 1
8

1
(2π)2

∬
d2k

q2(∂k2g2)g1∂k2g3 − q1(∂k1g1)g2∂k2g3

g3 =




Due to the antisymmetry

with respect to k2




=
1
8

1
(2π)2

∬
d2k

q1(∂k1g1)g2(∂k2g3)
g3 =

q1

32π2

∬
d2k

∆2k2
2

mg3
k

=
q1

32π

∞∫
0

dk
∆2k3

mg3
k

=
q1

16π
(54)

Π
(1)00

a (q) =
1
4

1
(2π)3

∫
d3k tr

(
G(1)
k,q

j0
aG(0)k

j0
a + G(0)k

j0
aG(1)k,−q j0

a

)
=




We use the relation

G(1)
k,−q = −G

(1)
k,q




1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j0
aG(0)k

j0
a − G(0)k

j0
aG(1)k,q

j0
a

)
=




We use the cyclic property of the

trace to make a permutation.



=

1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j0
aG(0)k

j0
a − G(1)k,q

j0
aG(0)k

j0
a

)
= 0 (55)

Π
(1)11

a (q) =
1
4

1
(2π)3

∭
d3k tr

(
G(1)
k,q

j1
aG(0)k

j1
a + G(0)k

j1
aG(1)k,−q j1

a

)
=




We use the relation

G(1)
k,−q = −G

(1)
k,q




1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j1
aG(0)k

j1
a − G(0)k

j1
aG(1)k,q

j1
a

)
=




We use the cyclic property of the

trace to make a permutation.



=

1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j1
aG(0)k

j1
a − G(1)k,q

j1
aG(0)k

j1
a

)
= 0 (56)
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Π
(1)22

a (q) =
1
4

1
(2π)3

∭
d3k tr

(
G(1)
k,q

j2
aG(0)k

j2
a + G(0)k

j2
aG(1)k,−q j2

a

)
=




We use the relation

G(1)
k,−q = −G

(1)
k,q




1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j2
aG(0)k

j2
a − G(0)k

j2
aG(1)k,q

j2
a

)
=




We use the cyclic property of the

trace to make a permutation.



=

1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j2
aG(0)k

j2
a − G(1)k,q

j2
aG(0)k

j2
a

)
= 0 (57)

Π
(1)12

a (q) = −Π(1)21
a =

1
4

1
(2π)3

∭
d3k tr

(
G(1)
k,q

j1
aG(0)k

j2
a + G(0)k

j1
aG(1)k,−q j2

a

)
=




We use the relation

G(1)
k,−q = −G

(1)
k,q




1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j1
aG(0)k

j2
a − G(0)k

j1
aG(1)k,q

j2
a

)
=




j1
a and j2

a are proportional to the identity matrix

so swapping G(0) and G(1) wouldn’t alter the trace



=

1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j1
aG(0)k

j2
a − G(1)k,q

j1
aG(0)k

j2
a

)
= 0 (58)
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6.2 The correlator Πb

Π
(1)01
b
(q) = −Π(1)10

b
(q) = 1

4
1
(2π)3

∫
d3k tr

(
G(1)
k,q

j0
bG(0)k

j1
b + G(0)k

j0
bG(1)k,−q j1

b

)
=

− 1
8

1
(2π)3

∭
d3k tr

(
(q0τ0 − q · ∇(gk · τ))(τ0k0 + gk · τ) − (τ0k0 + gk · τ)(q0τ0 − q · ∇(gk · τ)

(−k2
0 + g

2)2 ∂k1g · τ
)

=




Terms involving q0 cancel each

other,we integrate over k0 and

use the relation εjik = −εi jk



=

i
16

1
(2π)2

∬
d2k tr

(
q · ∇(gk · τ)gk · τ

g3 ∂k1g · τ
)

=
i

16
1
(2π)2

∬
d2k tr

©­­­­­­­­«

q · ∇(g3τ3)(g2τ2)∂k1g1τ1 + q · ∇(g2τ2)(g3τ3)∂k1g1τ1

+q · ∇(g1τ1)(g2τ2)∂k1g3τ3 + q · ∇(g2τ2)(g1τ1)∂k1g3τ3

g3

ª®®®®®®®®¬
=

− 1
8

1
(2π)2

∬
d2k
−q · (∇g3)g2∂k1g1 + q · (∇g2)g3∂k1g1 + q · (∇g1)g2∂k1g3 − q · (∇g2)g1∂k1g3

g3 =

1
8

1
(2π)2

∬
R2

d2k
q1(g2∂k1g3∂k1g2 − g2∂k1g1∂k1g3) + q2(g3∂k2g2∂k1g1 − g2∂k2g3∂k1g1 − g1∂k2g2∂k1g3)

g3
k

=

− ∆
2q2

16π

∞∫
0

|k | dk
ξk − k2

m

g3
k

=
m∆2q2

16π

∞∫
−µ

dξ
ξ + 2µ

(ξ2 + 2m∆2(ξ + µ))3/2 =
q2
8π

(59)
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Π
(1)02
b
(q) = −Π(1)20

b
(q) = 1

4
1
(2π)3

∫
d3k tr

(
G(1)
k,q

j0
bG(0)k

j2
b + G(0)k

j0
bG(1)k,−q j2

b

)
=

− 1
8

1
(2π)3

∭
d3k tr

(
(q0τ0 − q · ∇(gk · τ))(τ0k0 + gk · τ) − (τ0k0 + gk · τ)(q0τ0 − q · ∇(gk · τ)

(−k2
0 + g

2)2 ∂k2g · τ
)

=




Terms involving q0 cancel each

other,we integrate over k0 and

use the relation εjik = −εi jk



=

i
16

1
(2π)2

∬
d2k tr

(
q · ∇(gk · τ)gk · τ

g3 ∂k2g · τ
)

=
i

16
1
(2π)2

∬
d2k tr

©­­­­­­­­«

q · ∇(g3τ3)(g1τ1)∂k2g2τ2 + q · ∇(g1τ1)(g3τ3)∂k2g2τ2

+q · ∇(g1τ1)(g2τ2)∂k2g3τ3 + q · ∇(g2τ2)(g1τ1)∂k2g3τ3

g3

ª®®®®®®®®¬
=

− 1
8

1
(2π)2

∬
d2k
+q · (∇g3)g1∂k2g2 − q · (∇g1)g3∂k2g2 + q · (∇g1)g2∂k2g3 − q · (∇g2)g1∂k2g3

g3 =

− 1
8

1
(2π)2

∬
d2k

q1(g1∂k1g3∂k2g2 + g2∂k1g1∂k2g3 − g3∂k1g1∂k2g2) + q2(g1∂k2g3∂k2g2 − g1∂k2g2∂k2g3)
g3 =

∆2q1
16π

∞∫
0

|k |dk
ξk − k2

m

g3
k

= −m∆2q1
16π

∞∫
−µ

dξ
ξ + 2µ

(ξ2 + 2m∆2(ξ + µ))3/2 = −
q1
8π

(60)
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Π
(1)12
b
(q) = −Π(1)21

b
(q) = 1

4
1
(2π)3

∫
d3k tr

(
G(1)
k,q

j1
bG(0)k

j2
b + G(0)k

j1
bG(1)k,−q j2

b

)
=

− 1
8

1
(2π)3

∭
d3k tr

©­­­­­­­­«

(q0τ0 − q · ∇(gk · τ))∂k1 (gk · τ)(τ0k0 + gk · τ)∂k2 (gk · τ)
−(τ0k0 + gk · τ)∂k1 (gk · τ)(q0τ0 − q · ∇(gk · τ))∂k2 (gk · τ)

(−k2
0 + g

2)2

ª®®®®®®®®¬
=




We exploit the cyclic

property of the trace

and integrate over k0



= − i

32
1
(2π)2

∬
d2k tr

©­­­­­­­­«

(gk · τ)∂k2 (gk · τ)(q0τ0 − q · ∇(gk · τ))∂k1 (gk · τ)
−(gk · τ)∂k1 (gk · τ)(q0τ0 − q · ∇(gk · τ))∂k2 (gk · τ)

g3

ª®®®®®®®®¬
=




We use the relations εi jk = −εik j
and tr

(
τiτ jτkτl

)
= tr

(
τiτlτkτ j

)


= − i

16
q0

(2π)2
∫
R2

d2k tr

(
(g · τ)∂k2 (g · τ)∂k1 (g · τ)

g3
k

)
=

1
8

q0

(2π)2
∫
R2

d2k
g1(∂k2g2)(∂k1g3) − g3(∂k2g2)(∂k1g1) + g2(∂k2g3)(∂k1g1)

g3
k

=

1
8

q0

(2π)2
∫
R2

d2k
∆2 k2

1
m − ξk∆2 + ∆2 k2

2
m

g3
k

= −1
8

q0∆
2

(2π)2
∫
R2

d2k
ξk − k2

m

g3
k

=
q0
8π

(61)

Π
(1)00
b
(q) = 1

4
1
(2π)3

∫
d3ktr

(
G(1)
k,q

j0
bG(0)k

j0
b + G(0)k

j0
bG(1)k,−q j0

b

)
=




We use the relation

G(1)
k,−q = −G

(1)
q




1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j0
bG(0)k

j0
b − G(0)k

j0
bG(1)k,q

j0
b

)
=




We use the cyclic property of the

trace to make a permutation.



=

1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j0
bG(0)k

j0
b − G(1)k,q

j0
bG(0)k

j0
b

)
= 0 (62)

Π
(1)11
b
(q) = 1

4
1
(2π)3

∫
d3ktr

(
G(1)
k,q

j1
bG(0)k

j1
b + G(0)k

j1
bG(1)k,−q j1

b

)
=




We use the relation

G(1)
k,−q = −G

(1)
q




1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j1
bG(0)k

j1
b − G(0)k

j1
bG(1)k,q

j1
b

)
=




We use the cyclic property of the

trace to make a permutation.



=

1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j1
bG(0)k

j1
b − G(1)k,q

j1
bG(0)k

j1
b

)
= 0 (63)
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Π
(1)22
b
(q) = 1

4
1
(2π)3

∫
d3ktr

(
G(1)
k,q

j2
bG(0)k

j2
b + G(0)k

j2
bG(1)k,−q j2

b

)
=




We use the relation

G(1)
k,−q = −G

(1)
q




1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j2
bG(0)k

j2
b − G(0)k

j2
bG(1)k,q

j2
b

)
=




We use the cyclic property of the

trace to make a permutation.



=

1
4

1
(2π)3

∫
d3ktr

(
G(1)
k,q

j2
bG(0)k

j2
b − G(1)k,q

j2
bG(0)k

j2
b

)
= 0 (64)

7 Summary

At last, the complete effective action3 in terms of (2+1)-dimensional frequency-momentum4, q = (q, q0) and k = (k, k0)
is:

S(q, q0) =
∫

dq
d f na0(q)δ(q) − n

2m
aµ(q)aµ(−q) + aµ(q)πµνa aν(−q) + bµ(q)πµνb bν(−q) (65)

where the correlation matrices in the lowest order of the perturbative expansion are written as

Π
µν
a (q) =

1
4

1
(2π)3 (1 + q · ∇q′)

[∫
d3k tr

(
G(k + q′

2
) jµa (k)G(k −

q′

2
) jνa(k)

)] ����
q′=0
= (66)

=

©­­­­«

m
4π − i qy

16π
i qx

16π
i qy
16π 0 0

− i qx

16π 0 0

ª®®®®¬

(
1 +

2µ
m∆2 H(−µ)

)−1
+ O(q2)

Π
µν
b
(q) = 1

4
1
(2π)3 q · ∇q′

[∫
d3k tr

(
G(k + q′

2
) jµ

b
(k)G(k − q′

2
) jνb(k)

)] ����
q′=0
= (67)

=

©­­­­«

0 i qy
8π − i qx

8π

− i qy
8π 0 i f

8π
i qx

8π − i f
8π 0

ª®®®®¬
H(µ) + O(q2)

and currents for the fields a and b are

ja = (−τ3,− kx
m τ0,− ky

m τ0), jb = −τ3ja + (0,∆τ1,∆τ2) (68)

transforming back into space-time coordinates yields

S(x, t) =
∫

dx
dt

(
n
(
a0 − 1

2m
a2

)
+

m
4π

a2
0 −

κa
8π
ε0jka0∂jak +

κb
8π
εµνλbµ∂νbλ

)
(69)

3We extended the result for the case of negative chemical potential.
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Where a = A−∂xθ/2, a0 = A0−∂tθ/2, b = ∂xγ, bt = ∂tγ, κa =
(
1 + 2µ

m∆2 H(−µ)
)−1

, κb = H(µ) and ∆0 = 2|∆|.
The first term in the r.h.s contributes the Magnus force, the second gives rise to the Meissner effect, and the third is

responsible to the Thomas-Fermi screening. The forth term is an incomplete Chern-Simons term that contributes a

Hall-like response to the external field.

4Here we define q = (q, q0) and not as was used in the derivation of the correlators,q = (q, −q0) .
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Appendices

A Multidimensional Gaussian integration for real Grassmann fields

In the appendix we show how to calculate a multidimensional Gaussian integrals over Grassmann variables, ηk ,∫ (∏
k

dη∗kdηk

)
exp

(
−1

2
η∗k Aklηl

)
, (70)

where A is a Hermitian matrix and there is summation over repeated Latin indices[6, 14]. We start with the observation

that A may always be assumed to be skew-symmetric. For if there were any symmetric part, it would cancel due to the

anticommutativity of the Grassmann variables,

1
2

∑
kl

η∗k[Sym(A)]klηl = 1
2

∑
kl

η∗k(Akl + Alk)ηl = 1
2

∑
k>l

(Akl + Alk)(η∗kηl + ηlη∗k) = 0. (71)

Now, an skew-symmetric Hermitian matrix can always be written as A = iA′ where A′ is real skew-symmetric. Since

the eigenvalues of a real skew-symmetric matrix are imaginary, the diagonalization can only be carried by a complex

unitary matrix. In general, similarity transformations by unitary matrices should be avoided, since it would alter the

measure of integration
∏

k dη∗
k
dηk . However, it is possible to bring every real skew-symmetric matrix into a canonical

form, Ã = UT A′U, where U is a special orthogonal matrix,

Ã =
n⊕
j=1

©­«
0 λj

−λj 0
ª®¬
,

2n is the dimension of A and ±iλj are the eigenvalues of A.

The Jacobian determinant, due to the linear transformation ξk = (UT )klηl of the integration variables, is always unity
(det U = 1), so the integration measure is invariant,

∏
k dη∗

k
dηk =

∏
k dξ∗

k
dξk . Thus, applying a block diagonalization

transformation yields and evaluating the Gaussian integral,

∫ (∏
k

dη∗kdηk

)
e−

1
2η
∗
mAmnηn =

∫ (∏
k

dξ∗kdξk

)
e−

i
2 ξ
∗
k
Ãklξl =

∫ (∏
k

dξ∗kdξk

) (
1 − i

2
ξ∗k Ãklξl

)
=

n∏
k=1

iλk = pf(i Ã) = pf(UT AU) = pf(A), (72)

where we used the relations pf(UT AU) = det(U)pf(A) and pf(⊕nAn) =
∏

i pf(An).

Since det A = (pfA)2, in the special case that A itself is a block-diagonal matrix, we can write the relation

pf(A) = ±
∏
n

det(An)1/2 = ± exp

[∑
n

1
2
Tr log An

]
, (73)
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where An are the block matrices on the diagonal of A. Finally, we can write (up to a sign) the result of integration over

the real Grassmann fields as:∫ (∏
k

dη∗kdηk

)
exp

(
−1

2

∑
kl

η∗k Aklηl

)
=

∏
n

(det An)1/2 = exp

(∑
n

1
2
Tr log An

)
. (74)

B Fourier Transform identities based on Parseval’s theorem

1. Let f (x) and g(x) be integrable and let f (k) and g(k) be their Fourier Transform. If f (x) and g(x) are also

square-integrable, then we have Parseval’s theorem (Rudin 1987,p.187):

+∞∫
−∞

f (x)g(x)dx =
+∞∫
−∞

f (k)g(k)dk (75)

In particular, if g(x) is real, using the reality condition g(−k) = g(k), Parseval’s theorem takes the form of:

+∞∫
−∞

f (x)g(x)dx =
+∞∫
−∞

f (k)g(−k)dk (76)

Also, if f (x) = g(x) and real we get:

+∞∫
−∞

f 2(x)dx =
+∞∫
−∞

f (k) f (−k)dk (77)

2. Substituting k = 0 in the defenition of the Fourier transform gives

f (0) =
+∞∫
−∞

f (x)dx (78)

C Identities of Pauli matrices products

We would like to evaluate the trace of four Pauli matrices product. In order to do so, we distinguish between six

possible conditions for the matrices combination:
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Condition Implication

i = j tr(τiτ jτkτl) = δi j tr(τkτl) = 2δi jδkl

i = l tr(τiτ jτkτl) = δiltr(τ jτk) = 2δilδjk

i = k tr(τiτ jτkτl) = δik
(
2δi j tr(τkτl) − tr(τ jτiτkτl)

)
= 4δi jδklδik − 2δikδjl

j = k tr(τiτ jτkτl) = δjk tr(τlτi) = 2δjkδil

j = l tr(τiτ jτkτl) = δjl
(
2δi j tr(τkτl) − tr(τ jτiτkτl)

)
= 4δjlδi jδkl − 2δjlδik

k = l tr(τiτ jτkτl) = δkltr(τiτ j) = 2δklδi j

Where δab is Kronecker’s delta. In order to evaluate the traces in the table we used the identities {τa, τb} = 2δabI and
tr(τaτb) = 2δab .

Summing up all the different possible implication yields:

tr
(
τiτjτkτl

)
= 2δi jδkl + 2δilδjk − 2δikδjl (79)

If one matrices in the combination is the identity matrix then we have a sum of three Pauli matrices. In this case it is

easy to show that

tr
(
τiτjτk

)
= εi jk2i (80)

where εi jk is the Levi-Civita symbol.

D Fundamental quantities in Natural units

In the notes we used Natural units where c = ~ = e = 1 are unitless. We summarize the fundamental quantities units

under this unit system:
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Quantity Symbol SI units → Natural Units Relation

Length x (m) → (s) x = ct

Mass m (kg) → (s−1) mc2 = ~ω

Density n (m−2) → (s−2) n = #k2

Momentum p (kg m/s) → (s−1) p = mv

Energy E (J) → (s−1) E = ~ω

Action S (J · s) → (1) Z = e−S/~

Scalar Potential a0 (J/C) → (s−1) E = e a0

Vector Potential a ( kg m/s
C ) → (s−1) E = (p−ea)2

2m

Gap ∆ (m/s) → (1) E = ∆p

Gauge fields b,c,d (kg m/s) → (s−1) E = b2+c2+d2

2m

Flux Quanta Φ0 (J s/C) → (1) Φ0 =
hc
e

Current density j (C m−2 m/s) → (s−2) j = env

E Derivation of the gauge transformation

In this section we derive the most general gauge transformation that maintain the requirements as stated in section 2.

The first rule over the transformation U, as demanded in section 2, is:

U · ηx,t =
[
η̄x,t · U−1]† = (U−1)† · ηx,t (81)

which gives the first demand over the transformation:

U−1 = U† (82)

The Nambu spinors that correspond to BdG Hamiltonian,as derived in Eq.(4), fulfill the particle-hole symmetry so

they hold the form:

ηx,t =
©­«
φx,t

φ̄x,t

ª®¬
and η̄x,t =

(
φ̄x,t, φx,t

)
(83)

where we define η̄ ≡ η†.
Under the the particle-hole symmetry it can be also written as

η̄ = ηTτ1 (84)
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where τ1 is the first Pauli matrix.

Using the transformation, U, we obtain a new set of 2D spinors which are denoted by

Ψ = Uη, Ψ̄ = (Uη)† = η†U†, (85)

where Ψ̄ is obtained directly from the definition.

According to the second requirement, the transformation U must sustain the form of the spinors so

Ψ̄ = (Uη)Tτ1 = η
TUTτ1 = η

†τ1UTτ1 (86)

Equating equations (85) and (86) yields the second condition over U:

U† = τ1UTτ1 (87)

The first requirement implies that the transformation should be represented by unitary matrix. Any unitary matrix can

be represented by a matrix exponential of the form -

U = ei(ατ0+βτ1+γτ2+δτ3) (88)

since it satisfies U · U† = τ0 and has four degrees of freedom (it can produce four linear independent matrices).

Before continuing we recall that matrix exponential fulfill the following properties:

e0 = τ0 (89)

eaXebX = e(a+b)X (90)

eXe−X = τ0 (91)

eYXY−1
= YeXY−1 (92)

e(X
T ) = (eX)T (93)

e(X
†) = (eX)† (94)

Where X and Y are n×n complex matrices, a and b are arbitrary complex numbers. We denote the n×n identity matrix

by τ0 and the zero matrix by 0. Another handy identity is the anticommutation property of the Pauli matrices

{τi, τ j} = 2δi j (95)
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Now, armed with this knowledge we continue by finding the constrains on the general unitary matrix express as

matrix exponential with four parameters. Substituting Eq.(88) in the right side of the equality in Eq.(87) yields

τ1UTτ1 = eiτ1(ατT
0 +βτ

T
1 +γτ

T
2 +δτ

T
3 )τ1 = eiτ1(ατ0+βτ1−γτ2+δτ3)τ1 = ei(ατ0+βτ1+γτ2−δτ3) (96)

Making the substitution on the other side gives

U† = e−i(ατ
†
0+βτ

†
1+γτ

†
2+δτ

†
3) = e−i(ατ0+βτ1+γτ2+δτ3) (97)

So the constrain over the parameters is

τ0 = (U†)−1 · (τ1UTτ1) = ei(ατ0+βτ1+γτ2+δτ3) · ei(ατ0+βτ1+γτ2−δτ3) = (98)

eiα(τ0 cos r + ir̂ · τ sin r) · eiα(τ0 cos r + i(r̂ − 2δ
r
k̂) · τ sin r) =

ei2α
(
(τ0 cos r + ir̂ · τ sin r)2 − 2i(τ0 cos r + ir̂ · τ sin r)δ

r
sin r τ3

)
=

ei2α
(
cos2 r − sin2 r + i

βτ1 + γτ2 + δτ3
r

sin 2r − i
δτ3
r

sin 2r + 2
δ

r

(
i
−βτ2 + γτ1

r
+
δτ0
r

)
sin2 r

)

ei2α
((
β2 + γ2

r2 cos 2r +
δ2

r2

)
τ0 + i

βτ1 + γτ2
r

sin 2r − 2δi
βτ2 − γτ1

r2 sin2 r
)

(99)

In this this derivation the identities below were used

eiα+ir(r̂·τ) = eiα(τ0 cos r + i(r̂ · τ) sin r), τiτ j = iεi jkτk + δi jτ0 (100)

where τ = (τ1, τ2, , τ3) and r = (β, γ, δ).
We start by examine the diagonal elements, which are required to be equal to 1, so:

ei2α
(
(β2 + γ2) cos 2r + δ2

)
= β2 + γ2 + δ2 (101)

Since the diagonal elements of U must be real, one must require that

ei2α = ±1 (102)

Thus, this implies two possible solutions:

1. For α = πm and m ∈ Z, we get that
(β2 + γ2) cos 2r = β2 + γ2 (103)

so one option is to require that β2 + γ2 = 0. Also, in order to keep zero off-diagonal elements γ = 0. In this case

the transformation is given by

U = ei(πm+τ3δ) = eiπm(τ0 cos δ + iτ3 sin δ) (104)

79



2. For α = πm and m ∈ Z, we find that
(β2 + γ2) cos 2r = β2 + γ2 (105)

the second option is to demand that r = πn and n ∈ Z. These demands keep the off-diagonal elements zero. In

this case the transformation is given by

Ua = eiπm(τ0 cos πn + ir̂ · τ sin πn) (106)

but the second term, which proportional to sinus, is always zero so we end up with

Ua = eiπmτ0 cos πn (107)

For α = π
2 (2m − 1) and m ∈ Z, we find that

(β2 + γ2)(1 + cos 2r) = −2δ2 (108)

and since the left side of equality is non-negative, one must choose δ = 0, r = π
2 (2n + 1) and n ∈ Z. These

demands also fulfill the requirements of zero off-diagonal elements. In this case the transformation is given by

Ub = ei
π
2 (2m−1)

(
τ0 cos

( π
2
(2n + 1)

)
+ ir̂ · τ sin

( π
2
(2n + 1)

))
(109)

but the first term, which proportional to cosines, is always zero so we end up with

Ub = eiπmr̂ · τ sin
( π

2
(2n + 1)

)
(110)

The two different options can be combined into one transformation

U = eiπm
(
τ0 cos

π

2
n + r̂ · τ sin

π

2
n
)

(111)

where {n,m} ∈ Z, τ = (τ1, τ2) and r̂ = (cos ζ, sin ζ).

One can readily show that any U is composed of a finite product of the following matrices: τx, τy, eiµτz and eiπmτ0

where µ ∈ R and m ∈ Z. The actual number of distinct sequences can be reduced through use of the commutations

relations between the generators and is ultimately finite.
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F Applying the single-valued transformation to the inverse Green’s matrix

In this section we apply transformation

U = λe−iτzθ(x,t), λ = e−iγ(x,t) (112)

over the 2D p-wave Green’s matrix

G−1 =
©­«

i∂t + A0 − 1
2m (−p + A)2 + µ − {

∆, px − ipy
}

−
{
∆, px + ipy

}
i∂t − A0 +

1
2m (p + A)2 − µ

ª®¬
,∆ =

∆0
2

ei2θ(x,t) (113)

Thus, we need to evaluate the expression UG−1U†,

©­«
e−i(θ+γ) 0

0 ei(θ−γ)
ª®¬
©­«

i∂t + A0 − 1
2m (−p + A)2 + µ − {

∆, px − ipy
}

−
{
∆, px + ipy

}
i∂t − A0 +

1
2m (p + A)2 − µ

ª®¬
©­«

ei(θ+γ) 0

0 e−i(θ−γ)
ª®¬

We split the task into a few parts which are calculated individually using the identities

− i∂xg = [p, g] , {p, g} ≡ pg + gp = 2gp − i∂xg

as follows -

λe∓iθ (∓p + A)λ̄e±iθ = ∓p ± i(i∇γ ± i∇θ) + A = ∓(p + ∇γ) + a

λe∓iθ (∓p + A)2λ̄e±iθ = (∓p + a ∓ ∇γ)2 = (∓p + a)2 ∓ 2(∇γ) (∓p + a) + (∇γ)2 − i∇2γ

= (∓p + a)2 + {p,∇γ} ∓ 2(∇γ)a + (∇γ)2 (114)

λe∓iθ {∆0
2

e±2iθ, px}λ̄e∓iθ = λe∓iθ
∆0
2

(
2e±iθ pxe±iθ

)
λ̄e∓iθ = ∆0

(
px + ∂xγ

)
= ∆0 px + ∆0∂xγ

where {ei2θ, px} = pxeiθeiθ + eiθeiθ px = eiθ pxeiθ + ei2θ∂xθ + eiθ pxeiθ − ei2θ∂xθ = eiθ2pxeiθ .

So after the transformation the Green’s matrix is

G−1 =
©­«

i∂t + a0 − bt − 1
2m

[(−p + a)2 + {p, b} − 2b · a + b2] + µ − ∆0(px − ipy) − ∆0(bx − iby)
−∆0(px + ipy) − ∆0(bx + iby) i∂t − a0 − bt + 1

2m
[(p + a)2 + {p, b} + 2b · a + b2] − µ

ª®¬
In terms of Pauli’s matrices it can write the Green’s matrix as

G−1 = iτ0∂t − τ3

(
px

2 + py
2

2m
− µ

)
− ∆0

(
px τ1 + py τ2

)
−

(
−a0 τ3 −

{px, ax} + {py, ay}
2m

τ0

)
(115)

−
{px, bx} + {py, by}

2m
τ3 − ∆0

(
bx τ1 + by τ2

) − b0 τ0 −
a2
x + a2

y

2m
τ3 −

−axbx − ayby
m

τ0 −
b2
x + b2

y

2m
τ3
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where we defined the fields5

a0 = A0 − ∂tθ, a = A − ∇θ, bt = ∂tγ, b = ∇γ (116)

G Showing that there is no coupling between the 3-vector fields a and b

We start by showing that all the integrands of the correlators Πµν
ab

are antisymmetric with respect to the momentum-

frequency (2+1) vector, k:

tr
(
G(k + q

2
) j0

a(k)G(k −
q
2
) j0

b(k)
)
= tr

©­­«
(−(k0 − q0

2 )τ0 − gk+ q
2
· τ)(−τ3)(−(k0 +

q0
2 )τ0 − gk− q

2
· τ)τ0(

−(k0 +
q0
2 )2 + g2

k+ q
2

) (
−(k0 − q0

2 )2 + g2
k− q

2

) ª®®¬
=

2i(g1,k+ q
2
g2,k− q

2
− g2,k+ q

2
g1,k− q

2
) − 2((k0 − q0

2 )g3,k− q
2
+ (k0 +

q0
2 )g3,k+ q

2
)(

−(k0 +
q0
2 )2 + g2

k+ q
2

) (
−(k0 − q0

2 )2 + g2
k− q

2

) =

− tr
(
G(−k +

q
2
) j0

a(−k)G(−k − q
2
) j0

b(−k)
)

(117)

tr
(
G(k + q

2
) j1

a(k)G(k −
q
2
) j0

b(k)
)
= tr

©­­«
(−(k0 − q0

2 )τ0 − gk+ q
2
· τ)(−∂k1g3,kτ0)(−(k0 +

q0
2 )τ0 − gk− q

2
· τ)τ0(

−(k0 +
q0
2 )2 + g2

k+ q
2

) (
−(k0 − q0

2 )2 + g2
k− q

2

) ª®®¬
=

−2
(
(k0 − q0

2 )(k0 +
q0
2 ) + gk+ q

2
gk− q

2

)
(
−(k0 +

q0
2 )2 + g2

k+ q
2

) (
−(k0 − q0

2 )2 + g2
k− q

2

) ∂k1g3,k = −tr
(
G(−k +

q
2
) j1

a(−k)G(−k − q
2
) j0

b(−k)
)

(118)

tr
(
G(k + q

2
) j2

a(k)G(k −
q
2
) j0

b(k)
)
= tr

©­­«
(−(k0 − q0

2 )τ0 − gk+ q
2
· τ)(−∂k2g3,kτ0)(−(k0 +

q0
2 )τ0 − gk− q

2
· τ)τ0(

−(k0 +
q0
2 )2 + g2

k+ q
2

) (
−(k0 − q0

2 )2 + g2
k− q

2

) ª®®¬
=

−2
(
(k0 − q0

2 )(k0 +
q0
2 ) + gk+ q

2
gk− q

2

)
(
−(k0 +

q0
2 )2 + g2

k+ q
2

) (
−(k0 − q0

2 )2 + g2
k− q

2

) ∂k2g3,k = −tr
(
G(−k +

q
2
) j2

a(−k)G(−k − q
2
) j0

b(−k)
)

(119)

5For ∆ = ∆0e
iθ (x, t )/2 the corresponding transformations are U = λe−iτz θ (x, t )/2 and λ = e−iγ(x, t ). In this case, the fields are defined as

a0 = A0 − ∂t θ/2, a = A − ∇θ/2, bt = ∂tγ and b = ∇γ.
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We shown above that the integrand of the correlator Πab is antisymmetry with respect to k, .i.e.

tr
(
G0(k + q

2
) ja(k)G0(k − q

2
) jb(k)

)
= −tr

(
G0(−k +

q
2
) ja(−k)G0(−k − q

2
) jb(−k)

)
. (126)

The integrand of the correlator Πba is also anti-symmetric with respect to k. It can easily shown by (a) using the cyclic

property of the trace operation to reverse the order of the fields in both sides and (b) replacing q with −q in both sides
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to get correlators into the right form.

In conclusion: Since the correlators involve integration over the whole momentum-frequency space and the

integrands are anti-symmetric, they are all equal zero. Thus, there is no coupling between the 3-vector fields a and b.

This is a general property that holds to all orders of the gradient expansion.

H The vortices exchange statistics

The phase of the p-wave gap is defined as

θ =
∑
j(,i)

θi j (127)

Where θi j ≡ arg
(
r i − r j

)
is the phase that relates a particle at site, r i with a vortex located at r j .

The argument function is defined as the angle between the x axis and the vector r and is given by

arg (r) = 2 arctan

(
y

x −
√

x2 + y2

)
+ π(1 + 2`) (128)

with ` being the branch number.

Applying a suitable gauge transformation, the phase of the superconducting order parameter, ∆(r) = ∆0eiθ(r) is

transmuted into a potential field, a(r i). Under this kind of gauge, adding vortices to the system through the order

parameter is equivalent to placing magnetic flux of quanta Φ0. One should emphasize that only singular gauge trans-

formation create fluxiods.

The vector potential field a(r i), associated with phase θ by the gauge transformation

U = e−iτzθ/2, (129)

is given by

2π
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a (r i) =
∑
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∇r i θi j =
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x2
i j

(
1
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ŷ − yi j

x2
i j

x̂
)

(130)

=
∑
j(,i)

xi j ŷ − yi j x̂
x2
i j + y2

i j

=
∑
j(,i)

ẑ × r̂ i j

ri j
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Where r i j defined as r j − r i and Φ0 = π in natural units (Φ0 = h/2e in SI units). It will be shown as useful to define

the potential at r i due to a vortex that located at r j by

ai j ≡ Φ0
2π

ẑ × r̂ i j

ri j
. (131)

From hereby we regard the factor Φ0/2π as unity and recover it only in the end of the calculation. Since the gauge

transformation is singular, the vector potential creates a perpendicular magnetic field (The terms charge, magnetic field

and flux, in this context, are borrowed from the terminology of the Maxwell’s electrodynamics) of strength

(∇r i × a
) · ẑ = ∑

j(,i)




(∇r i × ai j
) · ẑ = (∇r i × ∇r i θ

) · ẑ = 0 , r i j , 0

lim
r i j→0

1
πr2

i j

2π∫
0

(
1
ri j
ϕ̂i j

)
·
(
ϕ̂i jri jdϕi j

)
= lim

ri j→0
2
r2
i j

= ∞ , r i j = 0

(132)

The result of the first case r i j , 0 is trivial. A curl over a gradient of a scalar field in a simply connected subregion

is always zero. This result can easily obtained by using the deferential form of the curl operator over the field a. In

the second case r i j = 0, the derivatives at this point are not well-defined and the curl is calculated directly from its

definition

(∇ × a) · n̂ ≡ lim
S→0

(
1
|S |

∮
Γ

a · dl
)

(133)

Here,
∮
Γ
a · dl is a line integral along the boundary of the area in question, |S | is the magnitude of the area, n̂ is the

unit vector perpendicular to the plane and dl is tangent to Γ and pointing anticlockwise with respect to n̂. We apply

the linear operator, curl on each term in the sum separately. Since the calculation should hold for any arbitrary closed

contour we can choose a different loop, that would ease the integration, for each term. The contour of the term, ai j is

chosen to be a circle centred at r j .

The result of the curl above seems proportional to a delta function. In order to find its proportionality coefficient

we use Kelvin–Stokes theorem, ∮
Γ

a dl =
∬

S

∇ × a ds. (134)

Where the notations and integration contours are the same as used to calculate the curl by its definition. ds is

perpendicular to the plane enclosed by the path integral and positively oriented. Calculating explicitly the l.h.s of the

theorem yields ∑
j(,i)

2π =
∫

d2r ∇ × a. (135)

from which we can deduce that

∇ × a = 2π
∑
j(,i)

δ(r i j) ẑ. (136)

86



Introducing back the factor Φ0/2π, the relevant expressions to the integration over the Chern-Simons term are

∇ × a = Φ0
∑
j(,i)

δ(r i j) ẑ. (137)

where

a (r i) = Φ0
2π

∑
j(,i)

ϕ̂i j

ri j
(138)

and the factor Φ0 in the expression reflects the fact that these are single-quantum vortex in a p-wave superconductor of

spinless fermions.

The expression for the scalar potential −a0, the time derivative of the phase θ/2, is
2π
Φ0

a0 = ∂tθ =
∑
j(,i)

∂tθi j =
∑
j(,i)

yi j Ûxj − xi j Ûyj
x2
i j + y2

i j

(139)

Usually, the particles and fluxoids move quite independently of each other. However, if the transformation introduce

a Chern-Simons term,

Lcs = ε
µνλaµ∂νaλ, (140)

into the Lagrangian then the particles are endows with the flux. Thus, when one of our particles move around another,

the effective action acquires a phase. We demonstrate the exchange process by calculating the contribution of the

Chern-Simons term in the case of the exchange of two particles. The path of the interchange between two vortices is

illustrated in Figure 3(c). Integrating the Chern-Simons term for the interchange yields

∫
d2ridt Lcs =

∫
d2ridt εµνλaµ∂νaλ =

∫
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(δ(r i − r1) + δ(r i − r2)) =
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2
0
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x12 Ûy2 − y12 Ûx2

x2
12 + y2

12
+

x21 Ûy1 − y21 Ûx1

x2
21 + y2

21

)
=
Φ2

0
2π

t f∫
ti

dt
x12 Ûy12 − y12 Ûx12

x2
12 + y2

12
=

Φ2
0

2π

θ(t f )=π∫
θ(ti )=0

dθ12 =
Φ2

0
2

where in the last step we switched to relative coordinates defined as

r21 = r2 − r1, ρ = r2 + r1. (141)
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The term ẑ × r i j · Ûr i j equals zero when Ûr i j is parallel to r i j . Thus, radial parts of the contour do not contribute to

the integration. Hence, the two operations, exchange of two particles and taking one particle half a rotation around the

other, are equivalent. To ease the integration we take the contour as shown in Figure 3(c).

Next, we calculate the contribution of the CS like term due the presence of an external magnetic field B(r) =
Φ0

2πλ2 K0
(
r
λ

)
ẑ associated with a single-quantum vortex flux of Φ0 [5]. The integration contour is taken as shown in

Figure 3(b) and calculation is done in two steps. First, we we move particle 2 along the arc with radius R, while keeping

particle 1 static. Then, we move both particles simultaneously in such way that separation distance between the two

particles is kept constant. For the first part we get

1
8π

∫
d2ridt a0Bz =

1
8π

∫
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−Φ0
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∂tθi2

) (
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( ri1
λ

))
= − Φ2

0
16πλ2

∫ R

0
dr rK0

( r
λ

)
=

− Φ2
0

16π

(
1 − R

λ
K1

(
R
λ

))
= − π

16

(
1 − R

λ
K1

(
R
λ

))
=

R−→∞
− π

16
(142)

Here λ is the penetration depth and we made the replacement θi2(t f ) − θi2(ti) → πH(ri − R). The justification of the

replacement lies in the fact that for a given r2 = (x2, y2) we can always map to each vector in the upper plane,r+ =

(x, y > 0) a vector in the lower plane, r− = ( x(y+y2)−2x2y2
y−y2

,−y) such that arg(r+ − r2(t))+ arg(r− − r2(t)) = 2π∆`. Here

∆` represents the difference between the branches of the two arguments. In the beginning of the circulation, at time ti ,

∆` = 0 but after particle 1 finished half a rotation, at time t f , ∆` = H(r − R).
For the second part we get

1
8π

∫
d2ridt a0Bz = −

Φ2
0

32π3λ2

∫
d2ridt

(
∂tθi2K0

( ri1
λ

)
+ ∂tθ1K0

( ri2
λ

))
=

− Φ2
0

32π3λ2

∫
d2rdt

(
∂targ(r − r2)K0

( |r − r1 |
λ

)
+ ∂targ(r i − r1)K0

( |r − r2 |
λ

))
=

− Φ2
0

32π3λ2

∫
d2rdt

(
∂targ(r − r2)K0

( |r − r2 − R|
λ

)
+ ∂targ(r − r2 − R)K0

( |r − r2 |
λ
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=

− Φ2
0

32π3λ2

∫
d2rdt [∂targ(r − r2 + R) + ∂targ(r − r2 − R)]K0

( |r − r2 |
λ

)
= 0 (143)

Here r2(t) − r1(t) = R, R = (R, 0) and r2(t) = (x2(t), 0). In order to show that this part of the integration do not

contribute, we notice can always map to each vector in the upper plane,r+ = (x, y > 0) a vector in the lower plane,

r− = (x,−y) such that arg(r+ − r2(t) ± R) + arg(r− − r2(t) ± R) = 0.

We found that the contribution of the external magnetic field cancels exactly the contribution from the collective

response of the condensate when the distance between the two vortices is infinite long, R→∞. This demonstrates that
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when the exchange is performed with large vortex separations compared to λ, this CS-like term does not contribute to

the exchange phase. At small distances, non-universal contributions will occur.

1 2

(a)

21

(b)

21

(c)

Figure 3: Equivalent contours of integration for the interchange of two particles. For the deficient CS term, The

equivalence is a consequence of the integral being linear to the arc central angle, while radial parts do not contribute.

For the complete CS term, the equivalence is due to the integral being linear to the winding number.
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The second addition to the vector potential, b(r i) due to the gauge transformation

U = e−iγ(r i ) (144)

where

γ(r i) = π
∑
j(,i)

( ∞∑
`=1
H(θi j − 2π`) −

∞∑
`=0
H(−2π` − θi j)

)
︸                                                 ︷︷                                                 ︸

H̃i j

(145)

is given by

π

Φ0
b = ∇iγ = π

∑
j(,i)

( ∞∑
`=1

δ(θi j − 2π`) −
∞∑
`=0

δ(−2π` − θi j)
)
∇iθi j = π

∑
j(,i)

∞∑
`=−∞

δ(θi j − 2π`)
︸                ︷︷                ︸

δ̃(θi j )

∇iθi j . (146)

The curl of the vector field b can be inferred from the Kelvin-Stokes theorem. The contour integration for the j term

in the sum is given by

π

Φ0

∫
Γ

bi jdl = π
2π∫

0

(δ(θi j) + δ(θi j − 2π)) θ̂i j
ri j
(θ̂i jri jdθi j) =



π, j is inside Γ

0, j is outside Γ
(147)

Where the notations and contour are the same as used to calculate ∇ × a in Eq.(132). The result does not depend on

the specific shape on the closed contour, that is to say that if the point r j is inside the closed loop the integration would

yield Φ0 and otherwise zero. Thus, the curl of b must fulfil

Φ0 =

∫
S

∇ × bi j ds. (148)

Thus, we deduce that

∇ × b = Φ0
∑
j(,i)

δ(r i j)ẑ (149)

Also, the expression for the field b0, the time derivative of γ(r i), is given by

π

Φ0
b0 = ∂tγ = −π

∑
j(,i)

∞∑
`=−∞

δ(θi j − 2π`)∇ jθi j Ûr j = −π
∑
j(,i)

δ̃(θi j)
ẑ × r̂ i j

ri j
Ûr j (150)

In order to stress the fields special properties, we write the field in Cartesian coordinates. Under this coordinate system,

the Dirac delta is ∑
`

δ(θi j − 2π`) = xi jH(xi j)δ(yi j) (151)

so the field b can be written as

bi j = Φ0H(xi j)δ(yi j)ŷ. (152)
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and the expression for the field b0 is

b0 = Φ0
∑
j(,i)
H(xi j)δ(yi j) Ûyj (153)

This means that result depends only on the number of times and the direction in which the contour crosses the line

yi j = 0.

The key to write the Dirac delta in terms of Cartesian coordinates is to notice that for a single vortex at the origin we

have θ = 0 (mod 2π) when y = 0, x > 0. We assume that in the vicinity of the positive axis (x > 0, y = 0) we can
always write the argument as θ[x(y), y] with x(y) being some parameterization that depends on our specific problem.

Thus, the total derivative of θ at the point (x > 0, y = 0) is

dθ
dy

����
(x>0,y=0)

=

[
∂θ

∂y
+
∂θ

∂x
∂x
∂y

] ����
(x>0,y=0)

=
x − y∂y x
x2 + y2

����
(x>0,y=0)

=
1
x

(154)

and by composition rule of a one dimensional Dirac delta function we get

∑
`

δ(θ − 2π`) = δ(y)/|dθ/dy |(x>0,y=0) = xH(x)δ(y) (155)

We processed by calculating the contribution to the action due to the Chern-Simons term associated with the field

b for the interchange two vortices. For the case that µ = 0 we have

∫
d2ridt ε0νλb0∂νbλ =

∫
d2r idt b0(∂1b2 − ∂2b1) =

∫
d2r idt ©­«

Φ0
∑
j(,i)

( ∞∑
`=−∞

δ(θi j − 2π`)
)
∇ jθi j · Ûr jª®¬

(∇ × b)z =

∫
d2r idt ©­«

Φ0
∑
j(,i)

δ̃(θi j)∇ jθi j · Ûr jª®¬
©­«
Φ0

∑
j(,i)

δ(r i j)ª®¬
=

Φ2
0

∫
dt

(
δ̃(θ12)∇2θ12 · Ûr2 + δ̃(θ21)∇1θ21 · Ûr1

)
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The calculation for µ , 0 is more complicated and goes as follows:

∫
d2ridt(1 − δµ0)εµνλbµ∂νbλ =

∫
d2r idt (b1∂2b0 − b1∂0b2 + b2∂0b1 − b2∂1b0) =∫

d2r idt
∑
j,k,j

[
bi j1 ∂2(bik1 Ûxk + bik2 Ûyk) − bi j2 ∂1(bik1 Ûxk + bik2 Ûyk) − bi j1 (∂1bik2 Ûxk + ∂2bik2 Ûyk)

+bi j2 (∂1bik1 Ûxk + ∂2bik1 Ûyk)
]
=

∫
d2r idt

∑
j,k,j

(
bi j1 Ûxk + bi j2 Ûyk

)
︸             ︷︷             ︸

b
i j
0

(
∂2bik1 − ∂1bik2

)
=

∫
d2r idt

[(
bi11 Ûx2 + bi12 Ûy2

) (
∂2bi21 − ∂1bi22

)
+

(
bi21 Ûx1 + bi22 Ûy1

) (
∂2bi11 − ∂1bi12

)]
=

Φ0

∫
dt

[(
b21

1 Ûx2 + b21
2 Ûy2

)
+

(
b12

1 Ûx1 + b12
2 Ûy1

)]
= Φ2

0

∫
dt

(
δ̃(θ12)∇2θ12 · Ûr2 + δ̃(θ21)∇1θ21 · Ûr1

)
(156)

We continue by switching to the relative coordinates which are defined as

r21 = r2 − r1, ρ = r2 + r1 (157)

∫
d2r idt εµνλbµ∂νbλ = Φ2

0

∫
dt

(
δ̃(θ12)∇2θ12 · Ûr2 + δ̃(θ21)∇1θ21 · Ûr1

)
=

Φ2
0

∫
dt

(
δ̃(θ12)∇2θ12 + δ̃(θ21)∇1θ21

) Ûρ + Φ2
0

∫
dt

(
δ̃(θ12)∇2θ12 − δ̃(θ21)∇1θ21

) Ûr21 =

Φ2
0

∫
dt

(
δ̃(θ21 − π) + δ̃(θ21)

) ∇21θ21 · Ûr21 = Φ
2
0

θ21(t f )=π∫
θ21(ti )=0

(
δ̃(θ21 − π) + δ̃(θ21)

)
dθ21 = Φ

2
0 (158)

The exchange of the vortices is done simultaneously and with the same angular velocity as shown in Figure 3(a). Thus,

ρ = 0 along the interchange process. However, this selection is a matter of convenient since the exchange process

depends only on the number of times branch cuts have been crossed and not on a specific contour. The following

identities were used in the calculation above

θ12 = θ21 + π, ∇2θ12 = ∇21θ21, ∇1θ21 = −∇21θ21. (159)

I The density particle and current associated with the field a

For the effective action of a 2D spinless p-wave superconductor,

S(x, t) =
∫

dx
dt

(
n
(
a0 − 1

2m
a2

)
+

m
4π

a2
0 −

κa
8π
ε0jka0∂jak +

κb
8π
εµνλbµ∂νbλ

)
(160)
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Where a = A − ∂xθ/2, a0 = A0 − ∂tθ/2, b = ∂xγ, bt = ∂tγ, κa =
(
1 + 2µ

m∆2 H(−µ)
)−1

, κb = H(µ) and
∆0 = 2|∆|.
In what follows we consider only the continuum limit with µ > 0 for which the effective action is simply

S(x, t) =
∫

dx
dt

[
n
(
a0 − a2

2m

)
+

m
4π

a2
0 −

1
8π

a0(∇ × a)z + 1
4π

b0(∇ × b)z
]

(161)

where we used the relation 1
8π

∫
dx
dt ελµνbλ∂µbν = 1

4π

∫
dx
dt b0(∇ × b)z that is proved in Appendix H.

The expression for particle density is

ρ =
δS
δa0
=

m
2π

a0 − 1
8π
(∇ × a)z + n (162)

and for current density it is

j = ∇aS = − n
m
a∇aa − 1

8π
a0∇a(∇ × a)z (163)

By differentiation in parts, we write the term with curl operator as

a0(∇ × a)z = ∂x(a0ay) − ay∂xa0 − ∂y(a0ax) + ax∂ya0 (164)

The full spatial derivatives of fields that are bounded to be zero at infinity do not contribute to the effective action and

can be neglected so the current can be written as

j = ∇aS = − n
m
a∇aa +

1
8π

∇a(ax∂ya0 − ay∂xa0) = − n
m
a − 1

8π
(ẑ × ∇)a0 (165)

The vortex density in the weak pairing regime is proportional to

ρv = ∂b0 S =
1

4π
(
∂xby − ∂ybx

)
=

1
4

∑
j

δ(r − rj) (166)

where rj are the vortices coordinates.

J Magnus Force and the vortex mass

The Magnus force is a Lorentz-like force that acts on the vortex in the presence of a finite superfluid density. Starting

from the term in the action ∫
dt

∬
d2r n∂tθ/2, (167)
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we write θ = arg (r − R(t)), where R(t) is the coordinate of the vortex. We can now write

n
2

∫
dt

∬
d2r ∂targ (r − R(t))

= −n
2

∫
dt

∬
d2r ∂tR · ∇Rarg (r − R(t))

=

∫
dt ÛR ·

[
−n

2

∬
d2r ∇Rarg (r − R(t))

]
(168)

We define

A = −n
2

∫
d2r ∇Rarg (r − R(t)) (169)

with associated “magnetic field” B

B = ∇R × A = n
2

∫
d2r∇R × ∇Rarg (r − R(t)) = πnẑ

(170)

The vortex thus experiences a Lorentz force with associated magnetic field πn, where n is the superfluid density.

Also, we can generate an expression for the vortex mass by rewriting the second term in the action as
∫

dt 1
2 mv Ûx2,

where mv =
∬

d2r m
4π (A − ∇rθ/2)2.

K Square lattice

The Hamiltonian density for the case that no electromagnetic fields penetrate the superconductor, there are no vortices

and the coupling constant ∆ is real (this can always be accomplished by the gauge transformation eiτ3θ/2, where θ is

the phase of the order parameter) 6 is

H =
(
p2

2m
− µ

)
τ3 + 2∆pxτ1 + 2∆pyτ2. (171)

Using the approximation (1 − cos(pxa)) ≈ (pxa)2/2 and sin(pxa)/a ≈ px and the corresponding approximation for

the y component, we find that the Hamiltonian density for a square lattice is

H = −
[

1
m
(cos px + cos py) +

(
µ − 2

m

)]
τ3 + 2∆ sin pxτ1 + 2∆ sin pyτ2 (172)

where a is the lattice constant and from hereby we take it to be unity. The eigenenergies are

Ek = ±
√[

1
m
(cos kx + cos ky) +

(
µ − 2

m

)]2
+ 4∆2 (

sin2 kx + sin2 ky
)

(173)

6∆ is the same order parameter appearing in Eq.(1). We should be careful and not mix ∆0 = 2∆ with it.
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where kx and ky are the eigenvalues of the momentum operators px and py , respectively. The bare green function that

fits the square lattice Hamiltonian is

G0 =
−τ0ω − gk · τ
−ω2 + g2

k
− iη

(174)

where

gk =

©­­­­­«
2∆ sin kx, 2∆ sin ky,− 1

m
(cos kx + cos ky) −

(
µ − 2

m

)
︸                                     ︷︷                                     ︸

ξk

ª®®®®®¬
(175)

and

g2
k =

[
1
m
(cos kx + cos ky) +

(
µ − 2

m

)]2
+ 4∆2

(
sin2 kx + sin2 ky

)
(176)

The electron density is

n = lim
η→0

1
2i
tr

(
1
(2π)3

∫ π

−π

∫ π

−π
d2k

∫ ∞

−∞
dω G0(k, ω)τ3e−iτ3η

)
=

1
8π2

∬
�
d2k

(
1 − ξk
|gk |

)
(177)

The coefficient of the partial Chern-Simons term is −κa/8π with7:

κa =
1

4π

∫
d2k

εiνλgi∂kxgν∂kygλ

|g |3 . (178)

The coefficient of the complete Chern-Simons term is κb/8π with:

κb =
1

4π

∫
d2k

εµνλgµ∂kx gν∂kygλ

|g |3 . (179)

All the integrals over the momentum space can be evaluated numerically.

7The indices are taken modulo 3, .i.e 3 −→ 0
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1 The many-body Hamiltonian in momentum space

The Hamiltonian of the topological Josephson junction in the background of a moving soliton is

H =
∫

dxΨ†xHΨx, (1)

where Ψx = (ψx, ψ̄x)T is a spinor which consists of a periodic and an anti-periodic Majorana field (the fields are real

functions), respectively. The single particle Hamiltonian is

H = τziv∂x − τyW(x, q), (2)

Appendix B

Signatures of the topological spin of
Josephson vortices in topological
superconductors
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with W(x) = m cos[π(x − q)/L] being the Majorana mass term.

We perform the following mode expansion1,

ψx =
1√
L

∑
kp

e−ikp xψkp (3)

ψ̄x =
1√
L

∑
ka

eikaxψ̄ka . (4)

where

kp(m) = 2π
L

m, ka(n) = 2π
L

(
n +

1
2

)
, m, n ∈ Z. (5)

and the opposite signs of the exponents reflect the counter-propagating Majorana edge states. Thus, the Hamiltonian

density transforms as follows:
∫ L/2

−L/2
dx ψxH1,1ψx =

∫ L/2

−L/2
dx ψx(iv∂x)ψx =

1
L

∫ L/2

−L/2
dx

∑
kp,k

′
p

e−i(kp+k
′
p )x(vk ′p)ψkpψk′p

=
∑
kp,k

′
p

δ−kp,k′p (vk ′p)ψ̄kpψk′p =
∑
kp

(−vkp)ψkpψ−kp =
N∑

n=−N
vkp(n)ψ−nψn

= ψ0ψ0 +

N∑
n=1

vkp
(
ψ†nψn − ψnψ

†
n

)
(6)

1If we are interested in the momentum range kp (nmin) ≤ kp ≤ kp (nmax ) than ka (nmin) ≤ ka ≤ ka (nmax − 1).
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∫ L/2

−L/2
dx ψ̄xH2,2ψ̄x =

∫ L/2

−L/2
dx ψ̄x(−iv∂x)ψ̄x =

1
L

∫ L/2

−L/2
dx

∑
ka,k

′
a

ei(ka+k
′
a )x(vk ′a)ψ̄ka ψ̄k′a

=
∑
ka,k

′
a

δ−ka,k′a (vk ′a)ψ̄ka ψ̄k′a =
∑
ka

(−vka)ψ̄ka ψ̄−ka =
N−1∑
n=−N

vka(n)ψ̄−n−1ψ̄n

=

N−1∑
n=0

vka(n)
(
ψ̄†nψ̄n − ψ̄nψ̄

†
n

)
(7)

∫ L/2

−L/2
dx ψ̄xH1,2ψx =

∫ L/2

−L/2
dx (ψxH2,1ψ̄x)† =

∫ L/2

−L/2
dx iW(x)ψ̄xψx

=
im
L

∫ L
2

− L
2

dx
∑
kp,ka

ei(ka−kp )x cos(π x − q
L
)ψkp ψ̄ka

=
im
2L

∫ L
2

− L
2

dx
∑
kp,ka

ei(ka−kp )x(eiπ x−q
L + e−iπ

x−q
L )ψkp ψ̄ka

=
im
2

∑
m,n

(δm,n+1e−iπ
q
L + δm,neiπ

q
L )ψkp (m)ψ̄ka (n)

=
im
2

N∑
m=−N

N−1∑
n=−N
(δ−m,n+1e−iπ

q
L + δ−m,neiπ

q
L )ψ−mψ̄n

=
im
2

N∑
m=1

N−1∑
n=0
(δm,n+1e−iπ

q
L + δm,neiπ

q
L )ψmψ̄n

+
im
2

N∑
m=1

N−1∑
n=0
(δm,n+1eiπ

q
L + δm,ne−iπ

q
L )ψ†mψ̄†n

+
im
2
(ψ0ψ̄

†
0 e−iπ

q
L + ψ0ψ̄0eiπ

q
L ) (8)

where we used the relations

ka(n) = π

L
(2n + 1) = − π

L
(
2(−n − 1) + 1

)
= −ka(−n − 1), kp(n) = −kp(−n),

in order to obtain Eq.(6-8).2

2 Integral representations of Kronecker delta. For any integer n, using a standard residue calculation we can write an integral representation for

the Kronecker delta as the integral below, where the contour of the integral goes counterclockwise around zero. This representation is also equivalent

to a definite integral by a rotation in the complex plane. δx,n = 1
2π i

∮
|z |=1 z

x−n−1 dz = 1
2π

∫ 2π
0 ei(x−n)ϕ dϕ
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Derivation of Eq.(7):

∑
ka

(−vka)ψ̄ka ψ̄−ka =
N−1∑
n=−N
−v 2π

L

(
n +

1
2

)
ψ̄ka (n)ψ̄−ka (n) =

N−1∑
n=0
−v 2π

L

(
n +

1
2

)
ψ̄ka (n)ψ̄

†
ka (n) +

N∑
n=1
−v 2π

L

(
−n +

1
2

)
ψ̄ka (−n)ψ̄−ka (−n)

N−1∑
n=0
−v 2π

L

(
n +

1
2

)
ψ̄ka (n)ψ̄

†
ka (n) +

N−1∑
n=0

v
2π
L

(
n +

1
2

)
ψ̄ka (−n−1)ψ̄−ka (−n−1) =

N−1∑
n=0

vka(n)
(
ψ̄†nψ̄n − ψ̄nψ̄

†
n

)
(9)

Derivation of Eq.(8):

∑
−N<m<0
−N<n<0

(
δm,n+1e−iπ

q
L + δm,neiπ

q
L

)
ψkp (m)ψ̄ka (n) =

∑
0<−m<N
0<−n<N

(
δ−m,−n−1e−iπ

q
L + δ−m,−neiπ

q
L

)
ψ−kp (−m)ψ̄−ka (−n−1) =

∑
0<m′<N

0<n′+1<N

(
δm′,n′e−iπ

q
L + δm′,n′+1eiπ

q
L

)
ψ†m′ψ̄

†
n′ =

N∑
m=1

N−1∑
n=0

(
δm,ne−iπ

q
L + δm,n+1eiπ

q
L

)
ψ†mψ̄

†
n (10)

The Hamiltonian in terms of Nambu spinors with a cutoff of N = 2
(
|kp | ≤ 4π

L

)
:

(
ψ 4π

L
ψ 2π

L
ψ0 ψ†2π

L

ψ†4π
L

ψ̄ 3π
L

ψ̄ π
L

ψ̄†π
L

ψ̄†3π
L

)

H =

©­­­­­­­­­­­­­­­­­­­­­­«

− 4π
L 0 0 0 0 0 0 0 ic∗

2

0 − 2π
L 0 0 0 0 0 ic∗

2
ic
2

0 0 0 0 0 0 ic∗
2

ic
2 0

0 0 0 2π
L 0 ic∗

2
ic
2 0 0

0 0 0 0 4π
L

ic
2 0 0 0

0 0 0 − ic
2 − ic∗

2 − 3π
L 0 0 0

0 0 − ic
2 − ic∗

2 0 0 − πL 0 0

0 − ic
2 − ic∗

2 0 0 0 0 π
L 0

− ic
2 − ic∗

2 0 0 0 0 0 0 3π
L

ª®®®®®®®®®®®®®®®®®®®®®®¬

©­­­­­­­­­­­­­­­­­­­­­­­«

ψ†4π
L

ψ†2π
L

ψ0

ψ 2π
L

ψ 4π
L

ψ̄†3π
L

ψ̄†π
L

ψ̄ π
L

ψ̄ 3π
L

ª®®®®®®®®®®®®®®®®®®®®®®®¬ ,

where c ≡ meiπ
q
L .
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Remarks:

1. The spinors in k-space consist of regular fermion fields for k > 0 and Majorana fields for k = 0.

Proof:

We start by calculating the commutation relations,

{ψk, ψk′} =
∑
x,x′

e−i(kx+k
′x)(ψx, ψx′ + ψx′ψx)

=
∑
x

e−i(k+k
′)x = δk,−k′ =




0, k, k ′ > 0

1, k = k ′ = 0
. (11)

In addition, since ψx =
∑

k eikxψk and ψx = ψ
†
x we find that ψk = ψ

†
−k . Using this relation we find that

{ψk, ψ
†
k′} = {ψk, ψ−k′} = δk,k′ . (12)

Thus, while for k = 0 the fields obey majorana commutation relations, for k > 0 they obey fermion commutation

relations.

2. The k-space Hamiltonian for reversed boundary conditions can easily deduced by exchanging the positions of

ψx and ψ̄x in the spinors and then comparing it with regular Hamiltonian:

HR =
(
ψx ψ̄x

)
(τziv∂x − τyW) ©­«

ψx

ψ̄x

ª®¬
=

(
ψx ψ̄x

)
τ2
x (τziv∂x − τyW)τ2

x
©­«
ψx

ψ̄x

ª®¬
(13)

=
(
ψ̄x ψx

)
(−τziv∂x + τyW) ©­«

ψ̄x

ψx

ª®¬
with

ψ̄x =
1√
L

∑
kp

eikp xψ̄kp (14)

ψx =
1√
L

∑
ka

e−ikaxψka . (15)

Thus, k-space single particle Hamiltonian for regular boundary condition and the reversed are related by:

HR = τxHτx = −H (16)
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2 The momentum states of the Hamiltonian density

Next, we derive the connection between the eigenstates in position space and momentum space, of the single particle

Hamiltonian. The eigenstates are found by solving the coupled equations,

©­«
iv∂x iW(x)
−iW(x) −iv∂x

ª®¬
©­«

f (x)
g(x)

ª®¬
= E ©­«

f (x)
g(x)

ª®¬
. (17)

We perform the following mode expansion,

f (x) = 1√
L

∑
kp

e−ikp x f (kp) (18)

g(x) = 1√
L

∑
ka

eikaxg(ka). (19)

We substitute the mode expansion and examine a specific k ′p and k ′a by applying the operators
∫ L/2
−L/2 dx exp(−ik ′px)

and
∫ L/2
−L/2 dx exp(ik ′ax) to the first and second equations, respectively. This results
∫

dx
∑
kp,k

′
p

(−vkp) f (kp)e−i(kp+k′p )x + i
∫

dx
∑
ka,k

′
p

W(x)g(ka)ei(ka−k′p )x = E
∫

dx
∑
kp,k

′
p

f (kp)e−i(kp+k′p )x

∫
dx

∑
ka,k

′
a

(−vka)g(ka)ei(ka+k′a )x−i
∫

dx
∑
kp,k

′
a

W(x) f (kp)ei(k′a−kp )x = E
∫

dx
∑
ka,k

′
a

g(ka)ei(ka+k′a )x

Preforming the integration with respect to x yields

−v
∑
kp

kp f (kp)+i
∑
kp,ka

W(ka − kp)g(ka) = E
∑
kp

f (kp) (20)

−v
∑
ka

kag(ka)−i
∑
ka,kp

W(ka − kp) f (kp) = E
∑
ka

g(ka) (21)

where for brevity we omitted the prime tag and W(k) ≡ 1
L

∫ L/2
−L/2 dx eikxW(x).
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3 Properties of the Hamiltonian in k-space

The Hamiltonian in k-space posses the following properties:

1. Particle-Hole symmetry (PHS),

H = −(Cn+1 ⊕ Cn)KHK(Cn+1 ⊕ Cn), (22)

where K is the complex conjugation operator and Cn is anti-diagonal matrix of ones with dimension n3.

2. Reversed soliton symmetry (RSS),

H(−q) = (τzK)H(q)(Kτz), (23)

which is valid since c(−q) = −c∗(q) with c ≡ meiπ
q
L .4

3. For any set of parameters (v,m, L, q), there will be a single zero-mode,

det(H) = 0. (24)

Moreover, the zero-mode is an eigenstate of the PHS operator.

4. For m = const the eigenstates are periodic in q with a period of 2L. This can easily be observed by writing the

Hamiltonian as,

H(q) = T(q)H(q = 0)T†(q), (25)

where T = T (1) ⊕ T (2) is a diagonal block matrix with

T (1)m,n = δm,neiπ
q
L (2m−1)e−iπ

q
L (2N ), 1 ≤ m, n ≤ N + 1 (26)

T (2)m,n = δm,ne−iπ
q
L (2m−1)eiπ

q
L (2N+1), 1 ≤ m, n ≤ N . (27)

Thus, the eigenstates of the system are T†(q)ψ(q = 0).

5. For m = const the spectrum of the system does not depend on the soliton’s displacement, q. We notice that

T is also unitary which means that H(q) can be expressed as similarity transformation of H(q = 0) and the

eigenvalues of matrix are always invariant under similarity transformations.

3An n-by-n matrix A is an anti-diagonal matrix if the (i, j) element is zero for all i, j ∈ 1, . . . , n with i + j , n + 1.
4c = const fulfills this condition.
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4 Choose a Majorana mass term that retain the periodicity of the soliton

As explained in section 3, the soliton returns to its original form after it completes two cycles while it is expected to

occur each cycle. In terms of the system eigenstate ψ(q) = (u, v)T we have

©­«
u(q + L)
v(q + L)

ª®¬
=

©­«
u(q)
−v(q)

ª®¬
, (28)

where u and v are vectors that correspond to the PHS relation which appears in Eq.(22). The soliton would return to

its original form after one cycle if the eigenstate would be

ψ(q) = ©­«
U(q)

(−1)b qL + 1
4 cV(q)

ª®¬
. (29)

This can be adding to the Majorana mass term a branch-cut,

W(x) −→ (−1)b qL + 1
4 cW(x), (30)

where the shift of floor’s argument is due to our demand that two counter propagating solitons would consolidate twice

in a cycle and their overlap would change smoothly. In a addition the new order-parameter assures us that the spinors

are single-valued with respect to the soliton displacement.

The connection between the desired eigenstate in Eq.(29) and the suggested Majorana mass term in Eq.(30) is made

by expressing the corresponding Hamiltonian as a similarity transformation,

H(q) = (Z(q)T(q))H(q = 0)
(
T†(q)Z†(q)

)
, (31)

where T was defined in Eq.(26) and Z = Z (1) ⊕ Z (2) is a diagonal block matrix with

Z (1)m,n = δm,n, 1 ≤ m, n ≤ 2n + 1 (32)

Z (2)m,n = δm,n(−1)b qL + 1
4 c, 1 ≤ m, n ≤ 2n.

Thus, the system’s eigenstates are ψ(q) = Z(q)T(q)ψ(q = 0).
One may raise the question - why not simply to make the the Majorana mass term to generate a U(1) group, such as

W(x) −→ e±iπ
q
L W(x). Actually we can consider a more general Majorana mass term, W(x) −→ e±i(2j+1)π q

L W(x) with
j ∈ Z. The corresponding similarity transformation is

H(q) = (M(q)T(q))H(q = 0)
(
T†(q)M†(q)

)
, (33)

where M = M (1) ⊕ M (2) is a diagonal block matrix,

M (1)m,n = δm,n, 1 ≤ m, n ≤ 2n + 1 (34)

M (2)m,n = δm,ne∓i(2j+1)π q
L , 1 ≤ m, n ≤ 2n.
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However, this transformation results unphysical eigenstates, ψ(q) = M(q)T(q)ψ(q = 0) as it renders eigenstates of well
separated solitons to overlap.

5 Add the missing Majorana fermion

The spinor contains a single zero-momentum field and 2n pairs of counter-propagating fields with non-zero momentum.

The zero-momentum field is a Majorana fermion that is located on one of the junction edges. Its position will depend

on the parity of the number of vortices enclosed by the junction. A zero-momentum Majorana is found on every edge

that encloses an odd number of vortices (including both bulk vortices and solitons). Hence, when we have an odd

parity, the zero-momentum Majorana will be localized at the inner edge of the junction. On the other hand, for an even

parity the zero-momentum Majorana will be localized on the outer edge of the junction. A second zero-momentum

field, which is absent in our one dimensional effective model, is localized around the core of one of the bulk vortices

or at the edge that encloses the whole physical system, depending on the parity. Since our model is an effective theory

of the Josephson junction, the second zero-momentum Majorana is absent. Thus, in order to recover the PHS we need

to add, by hand, an uncoupled zero momentum field to our model.

In order to add a decoupled zero-momentum Majorana to our model we add a decoupled block to the Hamiltonian,

which is just zero. In practice, we use the transformation Ψ→ PΨ

with

P =
©­­­­«

IN 0

0 0

0 I3N+1

ª®®®®¬
(35)

and In is an identity matrix of dimension n.

6 Transform the two Majorana fermions into a regular fermions

As shown in section 1, fields of zero momentum are majorana fermions. In order to write the groundstate in Thouless

represetaion, we transform the two majorana fields into regular fermion fields, Ψ→ TCΨ with

T = In ⊕ 1√
2

©­«
I 1

−I 1
ª®¬
⊕ I3n. (36)
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7 Transform the Hamiltonian into a “standard" PHS form

We would like to transform the single particle Hamiltonian such that PHS would take the form,

− H = (τxK)H(Kτx). (37)

where K is the complex conjugation operator. We limit ourselves to transformations that merely change the fields order

in the spinor, since we do not want to mix between fields that correspond to different momentums. These requirements

are accomplished by the transformation Ψ→ WTCΨ with

Wm,n =



δd 2N+2+m

2 e+(2N+1)mod(2N+1+m,2),n, m ≤ 2N + 1

δd 4N+3−m
2 e+(2N+2)mod(4N+4−m,2), j, 2N + 1 < m

. (38)

8 Representing our new Hamiltonian with a similarity transformation that

depend on q

The single particle Hamiltonian that correspond to a spinor of fermions with a PHS, H ′(q) = (WTC)H(q)(C†T†W†),
can be expressed as a similarity transformation of H ′(0),

H ′(q) = (Z(q)P(q))H ′(0)
(
P†(q)Z†(q)

)
. (39)

The matrix P = P(1) ⊕ P(2) is unitary with

P(1)m,n = e(−1)m(1−m) iπqL δm,n, m ≤ 2N + 1 (40)

P(2)m,n = e(−1)m(m−1) iπqL δm,n, m ≤ 2N + 1 (41)

and Z = Z (1) ⊕ Z (2) is orthogonal with

Z (1)m,n = Z (2)m,n = (−1)mod(m,2)b qL + 1
4 cδm,n, m ≤ 2N + 1. (42)

9 Reversing the boundary conditions

As described in the remarks of section 1, by reversing the boundary conditions ofψ and ψ̄ the single particleHamiltonian

transforms as H → −H. Consequently, the transformations, P and T that adds a second majorana to the model and

then transform the two majoranas into regular fermions are kept unchanged. However, the transformation, W (R) that

brings the Hamiltonian into a “standard" PHS form is obtained from the former transformation, W by a circular shift
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of 2N + 1 rows:

W (R)i, j =



δd 2n+2−i

2 e+(2n+2)mod(2n+3−i,2), j i ≤ 2n + 1

δd i+1
2 e+(2n+1)mod(i,2), j 2n + 1 < i

. (43)

Hence, the single particle Hamiltonian that correspond to a spinor of fermions with reversed boundary conditions and

PHS is

H(R)(q) = −(W (R)TC)H(q)(C†T†W (R)†). (44)

In addition, the reversed Hamiltonian, H(R)(q) can be expressed as a similarity transformation of H(R)(0),

H(R)(q) =
(
Z(q)P(R)(q)

)
H(R)(0)

(
P(R)†(q)Z†(q)

)
. (45)

where P(R) is obtained from P by interchanging its two blocks,

P(R) = (τx ⊗ I2N+1) P (τx ⊗ I2N+1) = P(2) ⊕ P(1) (46)

and Z = Z (1) ⊕ Z (1) is evidently unchanged.

10 The Geometric phase that groundstate acquire during the soliton’s mo-

tion

The Berry connection for a BCS many-body states is given by Read’s formula[2]:

i〈Ωq |∂qΩq〉 = i
4
tr

(
(1 + Z†Z)−1(Z†Z ′ − Z ′†Z)

)
(47)

where |Ω〉 is the many-body groundstate ,Z = (VU−1)∗ and the columns of the block matrix (U V)T are eigenstates

that correspond to positive eigenenergies in an acceding order. Read’s formula can be brought into a more suitable

form for taking symbolically the derivatives,

i〈Ωq |∂qΩq〉 = i
4
tr

[
V†V ′ − V

(
V†

) ′
+

(
U†

)−1
V†V

(
U†

) ′
− V†VU−1U ′

]∗
, (48)

in which only derivatives of the matrices U and V appear.

The standard procedure for calculating the overlap between two many-body states assume that all positive energy

single-particle eigenstates, that form (U V)T , are related to the negative ones by the PHS operator, τxK . However, it is

not granted that degenerate eigenstates would obey this relation and one must construct such states (as described in the

frame below, titled "Generating PHS zero-modes"). In order to construct the many-body groundstate, we choose the

zero-mode which leads to a non-vanishing determinant of U to correspond to a positive energy state (as explained in
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Figure 1: The geometric phase accumulated by the persisting Josephson vortex. The dashed (brown) line describes
the geometric phase accumulated by each persisting soliton in the presence of a vortex within the central region. In

addition, the solid (black) line describes the overlap norm of two counter-propagating solitons, which becomes non

zero at half cycles. At these points the geometric phase of each soliton acquires its universal values nπ/16, n ∈ Z.

the frame below, titled "Building the groundstate in the presence of zero-mode").

Using the procedure discussed above, we diagonalize H numerically for q = 0 and using the translation operator

Z(q)P(q) we obtain the eigenvectors for any other position of the soliton. We substitute into Eq. 48, performing

the derivative symbolically. The result is presented in Fig. 1 with the overlap calculated using the Onishi formula,

|〈Ω−q |Ωq〉| =
√
| det χ†−q χq | with χq = Tq χ0 and χT0 = (UT

0 ,V
T
0 ) [1] for two counter-persisting solitons, demonstrating

that the topological spin is in principle an observable. We repeated the procedure taking reversed boundary conditions

on the two Majorana edge states, obtaining the same phase but with an additional minus sign,which up to machine

precision is −π/8L.

Generating PHS zero-modes
Here describe a procedure to construct zero-modes which are related by the PHS operator. The PHS, H = τxH∗τx ,

assures us that two non-degenerate states with energy |ε | > 0 are related by |ε〉 = τxK | − ε〉. In the case of
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zero-modes, ε = 0 we need to construct two orthonormal states that also maintain this relation,

|v1〉 = a|u1〉 + b|u2〉 (49)

|v2〉 = Tv1 = āT |u1〉 + b̄T |u2〉 (50)

where u1 and u2 are two arbitrary orthonormal zero-modes that fulfill 〈u1 |T |u2〉 = 0, T is the PHS operator,

T = τxK (K is complex conjugate operator). Moreover, u1 and u2 are simply

u1 = WTCu′1, (51)

u2 = WTCu′2, (52)

where u′1 is the single zero-mode of H(q), and (u′2)i = δi,N+1 is the uncoupled zero-mode that was added to the

model. The requirement that v1 (and v2) are normalized gives a constrain on a and b,

〈v1 |v1〉 = 1⇒ |a|2 + |b|2 = 1⇒ a = | cosα |eiβ, b = | sinα |eiγ . (53)

The second requirement, namely, that the two zero-mode are orthogonal yields the following constrain:

〈v1 |v2〉 = ā2〈u1 |T |u1〉 + b̄2〈u2 |T |u2〉 + āb̄ (〈u1 |T |u2〉 + 〈u2 |T |u1〉) = 0. (54)

Noticing that

〈u2 |T |u1〉 = 〈u1 |T |u2〉 (55)

the relation can be further simplified,

〈v1 |v2〉 = ā2 A + b̄2B + āb̄C = 0. (56)

where A = 〈u1 |T |u1〉, B = 〈u2 |T |u2〉 and C = 2〈u1 |T |u2〉. Since C = 0, the constrain is simplified further to

Aā2 + Bb̄2 = 0 and together with the first constrain, |a|2 + |b|2 = 1 we get

|a|2 = 1
1 − A

B ei2(γ−β) (57)

with γ − β = − 1
2arg

A
B + (n + 1

2 )π and n ∈ Z because |a| < 1. Since the zero-modes are defined up to a phase it’s

enough to determine the relative phase between a and b. Out of the infinite possibilities to choose the phases β

and γ, it is convenient to pick β = 1
2argA and γ = 1

2argB.
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Building the groundstate in the presence of zero-mode
In order to construct the many-body groundstate, we start with the bare vacuum |Ω〉 and multiply it by a product of

quasi-particle annihilation operators, cε with positive energy. In the end we multiply it with one of the zero-mode

operators,

|Ω〉 = c0±
∏
j

cεi |0〉. (58)

One of the two zero-mode operators would make the construed state vanish identically. This point is better

understood by considering the Thouless representation of the groundstate,

|Ω〉 =
√
| det U | exp

(∑
i< j

Zi jψ
†
i ψ
†
j

)
|0〉, Z = (VU−1)∗. (59)

When the groundstate vanishes identically, det U = 0 and since 〈0|Ω〉 =
√
| det U | it means that groundstate is

orthogonal to the bare vacuum. In addition, det U = 0 means that U is singular and Z is undefined. Practically,

we identify the zero-mode for which det U , 0 as the annihilation operator and use it to contract the groundstate.
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1 The cylindrical argument function
In this section we adjust the argument function to a flat right-angled cylinder of circumference qy > 0, denoted by C.
In order to do so, we calculate the principal value of

lim
A→∞

2A∑
n=−2A

Arg
(
z + inqy

)
, (1)

which turns out to be convergent in R/2πZ. Furthermore, the infinite series converges into an elegant expression.
Thus, we define it as the cylindrical argument function:

φC(z, iqy)≡P .V .
∞∑

n=−∞
Arg

(
z+inqy

)
= Im

[
Log sinh

(
πz
qy

)]
. (2)

Appendix C

How vortex bound states affect the Hall
conductivity of a chiral p± ip
superconductor
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Derivation of the cylindrical argument function. We consider the following series in R/πZ,
A∑

n=−A
Arg

(
x + i

(
y + nqy

) )
=

i
2

A∑
n=−A

[
Log

(
x − i

(
y + nqy

) ) − Log
(
x + i

(
y + nqy

) ) ]

≡ i
2

A∑
n=−A

[Log (iz + n) − Log (iz + n)] (mod π), (3)

where z = x+iy
qy

.
Recall that for any z ∈ C

1
Γ (z) = zeγz

∞∏
n=1

(
1 +

z
n

)
e−

z
n , (4)

it follows that
1

Γ (z) Γ (−z) = −z2
∏
n,0

(
1 − z

n

)
e

z
n .[1] (5)

On the other hand, Weierstrass factorization theorem states that

sin (πz) = πz
∏
n,0

(
1 − z

n

)
e

z
n . (6)

Combining the above yields
1

Γ (z) Γ (−z) = −
z sin (πz)

π
. (7)

Plugging this into the identity in Eq.(95) and applying it to Eq.(3) yields

A∑
n=−A

Arg
(
x + i

(
y + nqy

) )

≡ i
2

[
Log

(
z sinh (πz)
z sinh (πz)

)
+ Log

(
Γ(1 + A + iz) Γ(1 + A − iz)
Γ(1 + A + iz) Γ(1 + A − iz)

)
−Log

(
z
z

)]
(mod π)

≡ i
2

[
Log

(
sinh (πz)
sinh (πz)

)
+ Log

(
Γ (1 + A + iz) Γ (1 + A − iz)
Γ (1 + A + iz) Γ (1 + A − iz)

)]
(mod π). (8)

We now note that
lim
A→∞

Γ (1 + A + iz) Γ (1 + A − iz)
Γ (1 + A + iz) Γ (1 + A − iz) = 1.

Thus,

lim
A→∞

A∑
n=−A

Arg
(
z+inqy

) ≡ i
2

Log
©­­«
sinh

(
πz
qy

)
sinh

(
πz
qy

)ª®®¬
(mod π) (9)

≡ i
2

(
Log sinh

(
πz
qy

)
−Log sinh

(
πz
qy

))
(mod π), (10)

where here z ≡ x+ iy. In addition, in our last step we performed a lift so the infinite sum would converge into a
function that is well defined in R

/
2πZ, just like the argument functions.
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While φC
(
z, qy

)
itself is not well defined on the cylinder C, it serves as a building block for multi-singularity

configurations,
ΘC(z) ≡

∑
i

niφC
(
z − zi, iqy

)
, (11)

that are iqy-periodic modulo 2π. Here zi ∈ C and ni ∈ Z are the displacement and class of the ith singularity,
respectively. In addition, we have the selection rule,∑

i

ni = 0, (mod 2) (12)

that determines which multi-singularity configurations are supported by the cylindrical topology.

Derivation of the selection rule. We aim to check how the cylindrical argument function transforms under
x → x + qx :

Log sinh
(
π

qy
(x + iy + iqy)

)
= Log

(
e

π
qy (x+iy+iqy) − e−

π
qy (x+iy+iqy)

)
− Log 2 =

Log
[
eiπ

(
e

π
qy
(x+iy) − e−

π
qy (x+iy+2iqy))] − Log 2 = Log

[
eiπ

(
e

π
qy
(x+iy) − e−

π
qy
(x+iy))] − Log 2 + iπ(2n + 1)

Thus, we find that φC(z + iqy, iqy) = φC(z, iqy) + π. This is in contrary to our exception that the phase function
φC

(
z, qy

)
would be iqy-periodic.

An example of a configuration that results a iqy-periodic phase field is the placement of a single vortex anti-vortex
(V-AV) pair on a cylinder,

Θ (z) = φC (
z − z1, iqy

) − φC (
z − z2, iqy

)
, (13)

with z, z1, z2 ∈ C.
The cylindrical argument function can be generalized to support periodicity along any axis, C/Zτ by substituting

qy = −iτ in Eq.(2):

φC(z, τ) ≡ P .V .
∞∑

n=−∞
Arg(z+nτ) = Im

[
Log sinh

(
iπz
τ

)]
, (14)

where z, τ ∈ C and z ≡ x+iy. The norm |τ | stands for the cylinder circumference while the phase Arg(τ) represent
the angle between the periodic boundary condition axis and the x-axis. In addition, the cylindrical argument function
obeys the relation φC(z + τ, τ) = φC(z, τ) + π and thus the selection rule in Eq.(12) holds also for acute-angled flat
cylinders.

The name "cylindrical argument function" is justified by the fact that on one hand it is a singly periodic function
and on the other hand it approaches the argument function in a vicinity of a vortex, φC

(
reiφ, τ

) −−−→
r→0

φ.

2 The toroidal argument function
In this section we adjust the argument function to a flat right-angled torus of circumferences qx, qy > 0, denoted by T .
In order to do so, we calculate the principal value of

lim
A→∞

2A∑
m,n=−2A

Arg
(
z + mqx + inqy

)
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which turns out to be convergent in R/2πZ. Furthermore, the infinite series converges into an elegant expression.
Thus, we define it as the toroidal argument function:

φT (z, qx,−iqy) ≡ P .V . lim
A→∞

2A∑
m,n=−2A

Arg
(
z+mqx+inqy

)
= Im

[
Log

(
iϑ1

(
z

iqy
,

iqx
qy

))
− 2z2

qxqy
arctg

(
qx
qy

)]
, (15)

where qx, qy > 0 and arctg is the arctangent function (with an image in [−π/2, π/2]).

Derivation of the toroidal argument function. We consider the following series in R/πZ,
A∑

m,n=−A
Arg

(
x+mqx+i

(
y+nqy

) )
=

A∑
m=−A

(
A∑

n=−A
Arg

(
x+mqx+i

(
y+nqy

) ))
, (16)

where we choose to first sum over n and only then over m. Applying Eq.(8) yields

A∑
m=−A

(
A∑

n=−A
Arg

(
x + mqx + i

(
y + nqy

) )) ≡
A∑

m=−A

i
2

[
Log

(
sinh (π z̄m)
sinh (πzm)

)
+ Log

(
Γ (1+A+i z̄m) Γ (1+A−i z̄m)
Γ (1+A+izm) Γ (1+A−izm)

)]
(mod π), (17)

where zm =
x+mqx+iy

qy
. We start by considering the following sum

A∑
m=−A

Log
(
sinh(π z̄m)
sinh (πzm)

)
≡Log

(
A∏

m=−A

sinh(π z̄m)
sinh(πzm)

)
(mod π).

It holds that

A∏
m=−A

sinh (π z̄m)
sinh (πzm) =

A∏
m=−A

eπ z̄m − e−π z̄m

eπzm − e−πzm
=

eπz0−eπz0

eπz0−eπz0

A∏
m=0

(
eπ z̄m

(
1−e−2π z̄m

)
eπzm

(
1−e−2πzm

)
) (

e−π z̄−m
(
1−e2π z̄−m

)
e−πz−m

(
1−e2πz−m

)
)

=
sinh (πz0)
sinh (πz0)

A∏
m=0

(
1 − e−2π z̄m

) (
1 − e2π z̄−m

)
(
1 − e−2πzm

) (
1 − e2πz−m

) . (18)

Using Eq.(83) one checks that

∞∏
m=−∞

sinh (π z̄m)
sinh (πzm) = e

2π iy
qy

ϑ3

(
ix+y
qy
+

iqx+qy
2qy ,

iqx

qy

)
ϑ3

(
ix−y
qy
+

iqx+qy
2qy ,

iqx

qy

) .
It follows that

i
2

∞∑
m=−∞

Log
(

sinh (π z̄m)
sinh (πzm)

)
≡ i

2
Log

©­­«
e

2π iy
qy

ϑ3

(
ix+y
qy
+

iqx+qy
2qy ,

iqx

qy

)
ϑ3

(
ix−y
qy
+

iqx+qy
2qy ,

iqx

qy

) ª®®¬
(mod π).
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We now turn to deal with

lim
A→∞

A∑
m=−A

Log
(
Γ(1+A+i z̄m) Γ(1+A−i z̄m)
Γ(1+A+izm) Γ(1+A−izm)

)
. (19)

In what follows, we assume that for any A ∈ N

lim
A→∞

A∑
m=−A

Log
(
Γ(1+A+i z̄m) Γ(1+A−i z̄m)
Γ(1+A+izm) Γ(1+A−izm)

)
= lim

A→∞

A∫
−A

Log
(
Γ(1+A+i z̄m) Γ(1+A−i z̄m)
Γ(1+A+izm) Γ(1+A−izm)

)
dm.

Recall from [2, Eq.11] that the for any z ∈ C with Re (z) > 0 it holds that
z∫

0

Log Γ (x) dx =
(1−z) z

2
+

z
2

log(2π)−ζ ′(−1)+ζ ′z(−1) , (20)

where ζ(s) and ζa(s) are Riemann zeta and Hurwitz zeta functions ,respectively. We write

J1 (A) =
A∫

−A
Log Γ

(
A+1− i (x+mqx)+y

qy

)
dm, (21)

J2 (A) =
A∫

−A
Log Γ

(
A+1+

i (x+mqx)+y
qy

)
dm, (22)

J3 (A) =
A∫

−A
Log Γ

(
A+1+

i (x+mqx)−y
qy

)
dm, (23)

J4 (A) =
A∫

−A
Log Γ

(
A+1− i (x+mqx)−y

qy

)
dm. (24)

Inserting these and Eq.(20) into Eq.(19) and taking the limits A→∞ yields

i
2

∞∑
m=−∞

Log
(
Γ(1+A+i z̄m) Γ(1+A−i z̄m)
Γ(1+A+izm) Γ(1+A−izm)

)
≡ − 4xy

qxqy
arctg

(
qx
qy

)
(mod π). (25)

Combining the parts, reveals that the infinite sums converge into an elegant expression:

lim
A→∞

A∑
m=−A

A∑
n=−A

Arg
(
x+mqx+i

(
y+nqy

) ) ≡ (26)

i
2

Log
©­­«
ϑ1

(
ix+y
qy
,
iqx

qy

)
ϑ1

(
ix−y
qy

,
iqx

qy

) ª®®¬
− 4xy

qxqy
arctg

(
qx
qy

)
(mod π) ≡

i
2

[
Log

(
iϑ1

(−ix−y
qy

,
iqx
qy

))
−Log

(
iϑ1

(−ix+y
qy

,
iqx
qy

))]
− 4xy

qxqy
arctg

(
qx
qy

)
(mod π) =

Im
[
Log

(
iϑ1

(−ix+y
qy

,
iqx
qy

))]
− 4xy

qxqy
arctg

(
qx
qy

)
(mod π).
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In the calculation above, we used the transformation rule in Eq.(88) to represent the expression in term of the first
Jacobi theta function. Then, by using the logarithm product rule, we assured that the principal value of the infinite
sum converge into a function that is well defined in R/2πZ, as discussed in Appx.(5.1). Our last step was to use the
identities Eq.(89-90) in order to represent the results as an imaginary part of a compact expression.

In the derivation of the toroidal argument function, we performed the sum over n and only then over m. In other
words, we first “folded” the plane to a cylinder about the x-axis and then “folded” the cylinder to a torus about the
y-axis. We now describe the result of “folding” the plane about the y-axis first instead. Naively, one may expect that it
would merely be equivalent exchanging between the two sides of the rectangle, qx ↔ qy but this shows up to be not
accurate. Summing first over m and then over n, when calculating φT (z, qx, qy), would yield

lim
A→∞

2A∑
n=−2A

( 2A∑
m=−2A

Arg
(
z + mqx + inqy

))
= Im

[
Log

(
iϑ1

(
z

qx
,

iqy
qx

))
+

2z2

qxqy
arctg

(
qy
qx

)]
− π

2
. (27)

A comparison of Eq.(27) with Eq.(15) reveals that not only qx and qy are exchanged, there is also a rotation of the
coordinate system by π

2 counter-clockwise, z → ei
π
2 z.

Derivation of the toroidal argument function when folding order is reversed. We expect that reversing the order
that a plane is folded into a torus would result an exchange between qx and qy . Thus, we use the identities in
Eq.(89-91) to establish the following relation:

ϑ1

(
x + iy

qx
,

iqy
qx

)
= i

√
qx
qy

eπ
qy
qx

(−ix+y
qy

)2

ϑ1

(−ix + y

qy
,

iqx
qy

)
.

Next, we manipulate the relation and obtain that

Im
[
Log

(
iϑ1

(−ix + y

qy
,

iqx
qy

))]
= Im

[
Log

(
i2
√

qy
qx

e−π
qy
qx

( −ix+y
qy

)2

ϑ1

(
x + iy

qx
,

iqy
qx

))]
=

Im
[
Log

(
iϑ1

(
x + iy

qx
,

iqy
qx

))]
+

2πxy
qxqy

− π
2
(mod 2π).

(28)

We insert it into Eq.(15) together with the identity arctg
(
qx

qy

)
= π

2 − arctg
(
qy
qx

)
to complete the derivation.

As the cylindrical argument function, the toroidal argument function φT
(
z, qx,−iqy

)
also does not share the same

periodicity as the torus T , .i.e, it is not Λ-periodic, where Λ = qxZ+ iqyZ and qx, qy > 0. However, it serves as a basic
building block for constructing phase fields that are well defined on T . Given a singularity configuration,

ΘT (z) ≡
m−1∑
i=0

kiφT
(
z − zi, qx,−iqy

)
. (29)

where zi ∈ C and ki are the displacement and class of the ith singularity, respectively. For any flat right-angled torus
of the form Λ = qxZ + iqyZ, the multi-singularity configuration ΘT (r) is Λ-periodic iff

m−1∑
i=0

ki =
m−1∑
i=0

kizi = 0. (30)
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So far we discussed argument functions andmulti-vortex configurations on a right-angled torus. In certain instances
it is beneficial to describe them on a acute-angled torus, i.e. a flat torus of the form C/(Zτ1 + Zτ2). Rewriting Eq.(15)
with a change of variables, qx = τ1 and qy = −iτ2, yields a toroidal argument function that is suitable for any flat torus:

φT (z, τ1, τ2) ≡ P .V . lim
A→∞

2A∑
m,n=−2A

Arg (z + mτ1 + nτ2) = Im
[
Log

(
iϑ1

(
− z
τ2
,
τ1
τ2

))
− 2iz2

τ1τ2
arctg

(
iτ1
τ2

)]
, (31)

where τ1, τ2 ∈ C span a parallelogram and satisfy Im(τ̄1τ2) > 0 (since the first Jacobi theta function converges only
when −τ1/τ2 is confined to the upper plane). Furthermore, arctg(z) is defined on the whole complex plane by an
analytical continuation (see Appx.(5.2)).

The name "toroidal argument function" is justified by the fact that on one hand it is a singly periodic function and
on the other hand it approaches the argument function in a vicinity of a vortex, φT

(
reiφ, τ

) −−−→
r→0

φ.
We note that τ2 is a mediator of scalings and rotations on the torus. Any combination of such operations can be

viewed as multiplying z by reiθ ∈ C× (which yields a scaling by r > 0 and a rotation by an angle of θ). We note that it
holds that

φT
(
reiθ z, τ1, τ2

)
= φT

(
z,

1
r

e−iθτ1,
1
r

e−iθτ2

)
. (32)

Namely, rotation of z by θ and scaling by r is equivalent to a rotation of τ1 and τ2 by −θ and a scaling by 1
r .

The generalized toroidal argument function φT (z), which itself is not Λ-periodic, serves as a basic building
block for constructions of multi-singularity configurations, ΘT (z) that are Λ-periodic. Given a flat torus of the form
Λ = Zτ1 + Zτ2 and a singularity configuration,

ΘT (r) ≡
m−1∑
i=0

kiφT (z − zi, τ1, τ2) . (33)

where zi ∈ C and ni are the displacement and class of the ith singularity, respectively. ΘT (r) is Λ-periodic iff
m−1∑
i=0

ki =
m−1∑
i=0

kizi . (34)

Derivation of the generalized selection rule. We begin with examining how φT (z, τ1, τ2) transforms under
z → z + τ2:

φT (z + τ2, τ1, τ2) = Im
[
Log

(
iϑ1

(
z
τ2
+1,−τ1

τ2

))
− 2i(z + τ2)2

τ1τ2
arctg

iτ1
τ2

]
=

φT (z, τ1, τ2) +π−Im
[
2i(2z + τ2)

τ1
arctg

iτ1
τ2

]
(mod 2π).

Next, we use the result to analyze how a multi-vortex configuration, ΘT (z, τ1, τ2) transforms under z → z + τ2:

ΘT (z+τ2, τ1, τ2) = ΘT (z, τ1, τ2) +π
m−1∑
i=0

ki (35)

− Im

[(
4i
τ1

m−1∑
i=0

ki(z−zi) + 2iτ2
τ1

m−1∑
i=0

ki

)
arctg

iτ1
τ2

]
(mod 2π). (36)
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Demanding ΘT (z, τ1, τ2) to be τ2 periodic for any z ∈ C leads to the following requirements:


m−1∑
i=0

ki = 0,

Im

[
4i
τ1
arctg

(
iτ1
τ2

) m−1∑
i=0

kizi

]
= 0 (mod 2π).

(37)

We now turn to examining how φT (z, τ1, τ2) transforms under z → z + τ1,

φT (z+τ1, τ1, τ2) = Im
[
Log

(
iϑ1

(
z+τ1
τ2

,−τ1
τ2

))
− 2i(z+τ1)2

τ1τ2
arctg

iτ1
τ2

]
(mod 2π).

By using the identity in Eq.(92), we check how ϑ1

(
z
τ2
+
τ1
τ2
,−τ1

τ2

)
transforms,

ϑ1(z − τ, τ) = e−πiτ+2πiz+πiϑ1(z, τ) ⇒ ϑ1( z
τ2
+
τ1
τ2
,−τ1
τ2
) = eiπ

2z+τ1+1
τ2 ϑ1( z

τ2
,−τ1
τ2
),

and together with

Im
[
Log eiπ

2z+τ1+1
τ2

]
= Im

[
iπ

2z + τ1 + 1
τ2

]
(mod 2π),

we find that

φT (z + τ1, τ1, τ2) = φT (z, τ1, τ2) + Im
[
π

2z + τ1 + 1
τ2

− 4iz+2iτ1
τ2

arctg
(
iτ1
τ2

)]
(mod 2π).

Our next step is to analyze how a multi-vortex configuration, ΘT (z, τ1, τ2) transforms under z → z + τ1.

ΘT (z + τ1, τ1, τ2) = ΘT (z, τ1, τ2) + Im

[(
iτ1
τ2

(
π − 2arctg

iτ1
τ2

)
+ iπ

) m−1∑
i=0

ki+

+
2i
τ2

(
π − 2arctg

iτ1
τ2

) m−1∑
i=0

ki(z − zi)
]
(mod 2π) (38)

Demanding ΘT (z, τ1, τ2) to be τ1 periodic for any z ∈ C leads to the following requirements:


m−1∑
i=0

ki = 0,

Im

[
2i
τ2

(
π − 2arctg

iτ1
τ2

)m−1∑
i=0

kizi

]
= 0 (mod 2π).

(39)

Combining the conditions above gives a selection rules,



m−1∑
i=0

ki = 0,

Im

[
4i
τ1
arctg

(
iτ1
τ2

)m−1∑
i=0

kizi

]
≡ 0 (mod 2π),

Im

[
2i
τ2

(
π + 2arctg

(
iτ1
τ2

))m−1∑
i=0

kizi

]
≡ 0 (mod 2π),

(40)
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which determine whether a multi-vortex configuration, φT (z, τ) is Λ-periodic. The configuration would be periodic
with respect to any flat torus, regardless to its circumferences, iff

m−1∑
i=0

ki =
m−1∑
i=0

kizi, (41)

which coincide we the selection rule for a right-angled flat torus.

Next, we consider the multi-vortex configuration,

ΘT (z) =
3∑

k=0
(−1)iφT (z − zi, τ1, τ2) (42)

where two vortices with winding number +1 are located at opposite corners of a parallelogram and the second pair
of vortices with the opposite winding number are located at the other opposing corners. The selection rule reveals
that this multi-vortex configuration is Λ-periodic regardless of the torus dimensions. In addition, it is the minimal
configuration of vortices with a single winding which is Λ-periodic.

The selection rule allow a parallelogram to spread over a few tiles. In addition, a vortex that is placed in one tile
would also appear in all the other replicas. Hence, the selection rule is actually less restrictive then it seems at first
sight, making it for applicable to many scenarios.

3 Placing a single V-AV pair on a torus
One might hold to the notion that it might not be possible to place a single V-AV pair on a flat torus. However
we would like to suggest evidence to the contrary. The toroidal argument function consists of two terms. The first
term encodes the singularities completely, while the second one only enforces the selection rules. Furthermore, for
supported multi-singularity configurations the second term amounts to some constant, which donates only to some
globally fixed phase.

In other words you would suspect this second term can be eliminated with extreme prejudice. This is not completely
true, since the periodicity still need to be enforced on the torus. Thus we are free to replace this second term with an
equivalent term, that enforces them. A simple ansatz that recovers the single-valuedness (mod 2π) of the phase field is
ΘT

′(z) = φT ′(z,w0) − φT ′(z,w1) with

φT
′(z,w)≡ Im

[
Log

(
iϑ1

(
z−w
τ2

,−τ1
τ2

))
+

2πz
τ2

Re(w/τ2)
Im(τ1/τ2)

]
, (43)

where the second term ensures it is single-valued (mod 2π). Any multi-singularity configuration that obey the selection
rule in Eq.(41) is the same (up to constant) regardless to the building block that was used.

Asserting the periodicity of the minimal singularity configuration.

ΘT
′(z + τ1)= Im

[
Log

(
ϑ1

(
z−w0
τ2
+
τ1
τ2

)
ϑ̄1

(
z−w1
τ2
+
τ1
τ2

))]
+

2π(z + τ1)
τ2

Re(w0−w1
τ2
)

Im(τ1
τ2
) =

ΘT
′(z) + Im

[
2πi

(
z−w0
τ2
− z−w1

τ2

)
+

2πτ1
τ2

Re(w0−w1
τ2
)

Im(τ1
τ2
)

]
= ΘT

′(z) (mod 2π)
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where in the second step we used the relation ϑ1(z − τ, τ)ϑ̄1(z′ − τ, τ) = ϑ1(z, τ)ϑ̄1(z′, τ)ei2π(z−z′).

ΘT
′(z + τ2) = ΘT ′(z) − Im

(
τ2
τ2

) Re(w0−w1
τ2
)

Im(τ1
τ2
) = Θ

T ′(z) (mod 2π) (44)

where in the second step we used the relation ϑ1(z + 1, τ)ϑ̄1(z′ + 1, τ) = ϑ1(z, τ)ϑ̄1(z′, τ).

We would like to compare between the toroidal argument functions appearing in Eq.(31 and Eq.(43). A calculation
of the supercurrent flux through the parallelogram sides, τ1 and τ2 (or any parallel dissection) for a V-AV yields:

φ(τ) =
∫
τ
dz J(z) · (ẑ × τ̂) =




2π
Im(τ1/τ2)Re

(
w0−w1
τ2

)
, τ = τ2

2π
[
Im

(
w0−w1
τ2

)
+ Re

(
w0−w1
τ2

)
Re(τ1/τ2)
Im(τ1/τ2)

]
, τ = τ1

. (45)

This calculation reveals that multi-vortex configuration satisfying the selection rule in Eq.(34) do not produce super-
current flux through the parallelogram sides.

Calculation of the supercurrent flux through the parallelogram sides. We start with the first term ,which encode
the singularities:

t=1∫
t=0

dt |R′(t)|∇RIm
[
Log

(
iϑ1

(
z(R(t))
τ2

))]
· (ẑ × τ̂) =

Im


1∫
0

dt |τ | ∇RLog
(
iϑ1

(
z(R(t)
τ2

))
· (−Imτ,Reτ)

|τ |


= (46)

Im


1∫
0

dt ∂zLog
(
iϑ1

(
z(t)
τ2

))
(1, i)·(−Imτ,Reτ)


= Im


1∫

0

dt ∂zLog
(
iϑ1

(
z(t)
τ2

))
iτ


=

{
z = z0 + τt
⇒ dz = τdt

}
= Re


z0+τ∫
z0

dz ∂zLog
(
ϑ1

(
z
τ2
,−τ1
τ2

))
=

{
0, τ = τ2

−πIm
(

2z0+τ1
τ2

)
, τ = τ1

, (47)

where R = (Re(z), Im(z)), z(t) = z0 + τt and τ̂ = (Re(τ), Im(τ)). Therefore, for a single V-AV pair the super-current
flux through a line parallel to the parallelogram side τi is

φa(τ) =
t=1∫

t=0

dt |R′(t)| Ja(R(t)) ·(ẑ×τ̂) =
{

0, τ = τ2

2πIm
(
w0−w1
τ2

)
, τ = τ1

(48)

where the super-current density is

Ja(R) = ∇RIm
[
Log

(
ϑ1

(
z(R)−w0

τ2

)
ϑ̄1

(
z(R)−w1

τ2

))]
(49)
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Now we turn to analyze the second term which is ∝ Im(z/τ2):

Im©­«
1
τ2

1∫
0

dt |R′(t)| ∇Rz(R(t))·(ẑ × τ̂)ª®¬
= Im©­«

1
τ2

1∫
0

dt |τ | (1, i) · (−Imτ,Reτ)
|τ |

ª®¬
= Im


1
τ2

1∫
0

dt iτ

= Re

(
τ

τ2

)
(50)

For a single V-AV pair the super-current flux through a line parallel to the parallelogram side τi is

φb(τi) =
t=1∫

t=0

dt |R′(t)| Jb(R(t)) · (ẑ × τ̂) = 2πRe
(
w0−w1
τ2

)
Re(τi/τ2)
Im(τ1/τ2) (51)

where the super-current density is

Jb(R) = 2π∇RIm
(
z(R)
τ2

) Re(w0−w1
τ2
)

Im(τ1
τ2
) (52)

4 Superconducting flat torus
We suggest a general multi-vortex configuration takes the form

ΘL(z) =
∑
i

kiφL(z, zi), (53)

where ki ∈ Z is the winding number that characterize the i vortex and zi is its position. The fundamental building
block, which differs by a smooth function from the toroidal argument function, is given by

φL(z, z0) = Im
[
Log

(
iϑ1

(
z − z0
τ2

,−τ1
τ2

))]
+ q1π Re

(
z2

τ2τ1

)
− q2π

Im2 (z/τ2)Re (τ1/τ2)
Im2 (τ1/τ2)

− q1π
Im2 (z/τ1)Re (τ2/τ1)

Im2 (τ2/τ1)
+ π

Im (z/τ1)
Im (τ2/τ1) +

[
2π Re

(
z0
τ2

)
− π

]
Im (z/τ2)
Im (τ1/τ2),

(54)

where qi represents the number of lattice sites along τi and q2 = q1 + 1, which is necessary in order to maintain
the single-valuedness (mod 2π) of φL(z, z0) at every lattice point, zm,n = (m/q1)τ1 + (n/q2)τ2 with m, n ∈ Z - i.e.,
φL(zm,n + τi, z0) − φL(zm,n, z0) = 0 (mod 2π). Furthermore, integrating the supercurrent, J ∝

(
1
2∇φL − A

)
along the

parallelogram, spanned by τ1 and τ2 reveals that

0 =
∮

J · d` ∝ NΦ0 −
∮

A · d`, (55)

and due to Dirac quantization condition ( eM e
2πε0~c2 ∈ Z), N =

∑
i ki must be an even number.
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Proving that φL(z, z0) is single valued (mod 2π) at the lattice sites. We start by examining how each one of the
first three terms in φL(z, z0) changes as we circulate around the torus holes:

ϑ1 (z + a + bτ, τ) = exp [iπ(a − b(2z + bτ + 1)] ϑ1(z, τ) =⇒ ϑ1

(
z − z0 + aτ2 + bτ1

τ2
,−τ1
τ2

)
=

exp
[
iπ

(
a + b

(
2

z − z0
τ2
+ b

τ1
τ2
+ 1

))]
ϑ1(z, τ)

=⇒ Im
[
Log

(
ϑ1

(
z − z0 + aτ2 + bτ1

τ2
,−τ1
τ2

))]
− Im

[
Log

(
ϑ1

(
z − z0
τ2

,−τ1
τ2

))]
=

π(a − b) + 2πb Re
(

z − z0
τ2

)
+ πb2 Re

(
τ1
τ2

)
(56)

Re
( (z + bτ1)2

τ2τ1

)
− Re

(
z2

τ2τ1

)
= 2b Re

(
zτ1
τ2τ1

)
+ b2 Re

(
τ2

1
τ2τ1

)
= 2b Re

(
z
τ2

)
+ b2 Re

(
τ1
τ2

)
(57)

Re
( (z + aτ2)2

τ2τ1

)
− Re

(
z2

τ2τ1

)
= 2a Re

(
zτ2
τ2τ1

)
+ a2 Re

(
τ2

2
τ2τ1

)
= 2a Re

(
z
τ1

)
+ a2 Re

(
τ2
τ1

)
(58)

Im2
(

z + bτ1
τ2

)
=

[
Im

(
z
τ2

)
+ b Im

(
τ1
τ2

)]2
= Im2

(
z
τ2

)
+ 2b Im

(
z
τ2

)
Im

(
τ1
τ2

)
+ b2 Im2

(
τ1
τ2

)

=⇒ Re (τ1/τ2)
Im2 (τ1/τ2)

[
Im2

(
z + bτ1
τ2

)
− Im2

(
z
τ2

)]
=

2b Im (z/τ2)Re (τ1/τ2)
Im (τ1/τ2) + b2 Re (τ1/τ2)

(59)

Thus, the function φ(z, z0) changes by

φL(z + bτ1) − φL(z) = (q1 + 1)2πb Re
(

z
τ2

)
+ πb2 (q1 + 1)Re

(
τ1
τ2

)
− πq2b2 Re

(
τ1
τ2

)

− 2πq2b Im (z/τ2)Re (τ1/τ2)
Im (τ1/τ2) (mod 2π),

(60)

as we circulate along τ1. For the case that q2 = q1 + 1 we find that φL(z, z0) is single-valued (mod 2π) at the lattice
sites, zm,n = (m/q1)τ1 + (n/q2)τ2 with m, n ∈ Z,

φL(zmn + bτ1) − φL(zmn) = 2πq2b
[
Re

(
zmn

τ2

)
− Re (τ1/τ2)

Im (τ1/τ2) Im
(

zmn

τ2

)]
(mod 2π)

= 2πnb (mod 2π) = 0 (mod 2π).
(61)

In addition, the function φ(z, z0) changes by

φL(zmn + aτ2) − φL(zmn) = +2πq1a
[
Re

(
zmn

τ1

)
− Re(τ2/τ1)

Im (τ2/τ1) Im
(

zmn

τ1

)]
(mod 2π)

= 2πma (mod 2π) = 0 (mod 2π)
(62)

as we circulate along τ2 and therefore single valued (mod 2π) at the entire space.

Next, we introduce a complementary vector potential. Due to the boundary conditions, the supercurrent is required
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to be doubly periodic, J(z + τi) − J(z) = 0. In addition, we want a homogeneous magnetic field, ∇ ×A = const. Thus,
the complementary vector field needs to fulfill the condition

A(z + τi
qi
) = A(z) + pΦ0

πqi
∇χi, (63)

where χi(z) ≡ φL(z + τi) − φL(z) for i = 1, 2, p = bN/2c and ∇χi = const. In addition, we take ~ = e = c = 1 and
thus Φ0 = hc/(2e) = π.

The condition in Eq.(63) assures us the following:

1. The flux through each unit cell is quantized,∯
dS(∇ × A) = 2pΦ0

q1(q1 + 1) . (64)

Proof: ∮
A·d` =

∫ zm,n+
τ2
q2

zm,n

[
A(z + τ1

q1
) − A(z)

]
·d` +

∫ zm,n+
τ1
q1

zm,n

[
A(z) − A(z + τ2

q2
)
]
·d` =

p
q1

∫ zm,n+
τ2
q2

zm,n

∇χ1 ·d` − p
q2

∫ zm,n+
τ1
q1

zm,n

∇χ2 ·d` = p
q1
χ1(z)

]zm,n+1

zm,n

− p
q2
χ2(z)

]zm+1,n

zm,n

=

2πp( 1
q1
− 1

q2
) = 2πp

q2 − q1
q1q2

=
2πp

q1(q1 + 1) .

(65)

2. The phase factors in the Peierls substitution method are single valued:
∫ zm,n+

τ2
q2

zm,n

[A(z + τ1) − A(z)]·d` = 0 (mod 2π)

∫ zm,n+
τ1
q1

zm,n

[A(z + τ2) − A(z)]·d` = 0 (mod 2π)

(66)

3. The flux through the torus surface is quantized,
∯

dS(∇ × A) = 2pΦ0.

Proof: ∮
A·d` =

∫ zm,n+τ2

zm,n

[A(z + τ1) − A(z)]·d` +
∫ zm,n+τ1

zm,n

[A(z) − A(z + τ2)]·d` =

p
∫ zm,n+τ2

zm,n

∇χ1 ·d` − p
∫ zm,n+τ1

zm,n

∇χ2 ·d` = 2πp(q2 − q1) = 2πp.
(67)

4. When the winding number around the magnetic unit cell is even, a translation by a lattice vector, τi would amount
to applying a gauge transformation,

Ψ(z) =Mi(z)Ψ(z + τi), (68)

where Ψ†(z) = (ψ†(z), ψ(z)) is a particle-hole spinor and Mi(z) = e−iσz χi (z)/2 are translation operators which
commute with each other, [M1,M2] = 0.
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We notice that χ2(z) can be obtained from χ1(z) by exchanging the indexes 1←→ 2.

∇χ1(z) = 2πq2

[
Re

(
x̂ + i ŷ
τ2

)
− Re (τ1/τ2)

Im (τ1/τ2) Im
(

x̂ + i ŷ
τ2

)]

= 2πq2

[(
Re

(
1
τ2

)
− Re (τ1/τ2)

Im (τ1/τ2) Im
(

1
τ2

))
x̂ −

(
Im

(
1
τ2

)
+

Re (τ1/τ2)
Im (τ1/τ2)Re

(
1
τ2

))
ŷ

]

=
2π

q2c2
2

[(
Re (τ2) − Re (τ̄1τ2)

Im (τ̄1τ2) Im (τ2)
)

x̂ +
(
Im (τ2) + Re (τ̄1τ2)

Im (τ̄1τ2)Re (τ2)
)
ŷ

] (69)

where in the last equality we used the relations

Re
(

qi
τi

)
=

qi
|τi |2

Re (τ̄i) = 1
qic2

i

Re (τi) ,

Im
(

qi
τi

)
=

qi
|τi |2

Im (τ̄i) = − 1
qic2

i

Im (τi) ,
(70)

and ci = |τi/qi | is the lattice constant in the τi direction. Based on Eq.(63), we construct the vector potential A(z) as
follows:

A(z) = Φ0p
π

(
∇χ2(z) Im (z/τ1)

Im (τ2/τ1) + ∇χ1(z) Im (z/τ2)
Im (τ1/τ2)

)
=

Φ0p
Im (τ̄1τ2) π (∇χ2(z)Im (zτ̄1) − ∇χ1(z)Im (zτ̄2)) =

= |εi j | 2Φ0pIm (zτ̄i)
Im

(
τ̄iτj

)
qic2

i

[(
Re (τi) +

Re
(
τ̄iτj

)
Im

(
τ̄iτj

) Im (τi)
)

x̂ +
(
Im (τi) −

Re
(
τ̄iτj

)
Im

(
τ̄iτj

) Re (τi)
)
ŷ

]
,

(71)

where i, j ∈ {1, 2} and εi j is the Levi-Chivita tensor.

Let us check that indeed the curl of the magnetic vector potential A(z) is as we expected:

B(z) = (∇ × A)z = ∂x Ay − ∂y Ax =

|εi j | 2Φ0p
Im

(
τ̄iτj

)
qic2

i

[(Re
(
τ̄iτj

)
Im

(
τ̄iτj

) Re (τi) − Im (τi)
)

Im (τi) −
(
Re (τi) +

Re
(
τ̄iτj

)
Im

(
τ̄iτj

) Im (τi)
)

Re (τi)
]

= −|εi j | 2Φ0pqi
Im

(
τ̄iτj

) = 2Φ0p
Im (τ̄1τ2) (q2 − q1) = 2Φ0p

Im (τ̄1τ2)

(72)

In the simple case of a rectangular lattice with the distance between nearest neighbor lattice sites taken to be unity,
τx = q and τy = i(q + 1), we have,

φL(x, y, x0, y0) = Im
[
Log

(
iϑ1

(
z − z0

i(q + 1), i
q

q + 1

))]
+

2πxy
q + 1

+
2πy0x
q + 1

+
πx
q
− πy

q + 1

A(x, y) = 2Φ0p
(

y

q + 1
x̂ +

x
q
ŷ

) (73)
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5 Intermezzo
5.1 Lifting of arctg
For z = x + iy = reiθ ∈ C× the principal value of the logarithm is given by

Log z := ln r + iθ, (74)

where θ is taken in (π, π]. It can also be written in terms of the principal value of the argument function, Arg:C\{0} →
R/2πZ,

Log z = ln |z | + i Arg z. (75)

This connection can also be written in terms of the principal value

Arg z =
i
2
(Log z − Log z) = Im [Log (z)] . (76)

Hence, the function atan2(y, x) can be represented in terms of the Argument function,

atan2(y, x)=Arg(x+iy)= i
2
(Log(x−iy)−Log(x+iy)) . (77)

In a similar fashion, we represent the arctangent function as,

arctg
( y

x

)
=

i
2

Log( x − iy
x + iy

). (78)

Comparing the two representations, we notice that the product formula of the logarithm can be used to lift of arctg
( y
x

)
to R/2πZ,

R2 R
/
πZ

R
/

2πZ

arctg( yx )

atan2(y,x) Log product formula . (79)

This trick is used throughout the article to lift the toroidal and cylindrical argument functions into R/2πZ.

5.2 Analytical continuation of arctg
We take Eq.(78) and substitute z = y/x. We then perform an analytical continuation of arctg by extending its domain
to the whole complex plane, z ∈ C,

arctg (z) = i
2

Log
(

1 + iz
1 − iz

)
. (80)

6 Special Functions
6.1 Jacobi theta functions
Here, we only introduce the theta functions which are used in the paper together with their relevant properties. There are
a number of notational systems for the Jacobi theta functions and it is the notation given inWhittaker andWatson[3, 4, 5]
that we adopt.
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i. The third Jacobi theta function
For any z, τ ∈ C such that Re τ > 0 we define the third Jacobi theta function to be

ϑ3 (z, τ) =
∞∑

n=−∞
eπin

2τ+2πinz =

∞∑
n=−∞

qn2
w2n, (81)

where q = eπiτ and w = eπiz . The third Jacobi theta function satisfies the following properties:

• It is quasi-periodic,
ϑ3 (z + a + bτ, τ) = e−πib

2τ−2πibzϑ3 (z, τ) ∀a, b ∈ Z. (82)
• It is presented by Jacobi triple product formula,

ϑ3 (z, τ) =
∞∏

m=1

(
1 − q2m

) (
1 + w2q2m−1

) (
1 + w−2q2m−1

)
. (83)

• It supports the transformation τ → −1/τ ,

ϑ3

(
z
τ
,−1
τ

)
= (−iτ) 1

2 e
π
τ iz

2
ϑ3 (z, τ) . (84)

• Zeros of ϑ3 (z, τ) occur when z ∈
(
Z + 1

2

)
τ + Z + 1

2 . • It is anti-symmetric with respect to z,

ϑ3 (z, τ) = ϑ3 (−z, τ) . (85)

• It transforms under conjugation as follows,

ϑ3 (z, τ) = ϑ3 (z,−τ) . (86)

ii. The first Jacobi theta function

For any z, τ ∈ C such that Re τ > 0 we define the third Jacobi theta function to be

ϑ1(z) = −i
∞∑

n=−∞
(−1)nq(n+1/2)2 exp((2n + 1)iπz) = −i

∞∑
n=−∞
(−1)nq(n+1/2)2w2n+1, (87)

where q = eπiτ and w = eπiz . The first Jacobi theta function satisfies the following properties:

• The first and third theta functions are related:

ϑ1 (z, τ) = e
1
4 πiτ+πi(z+ 3

2 )ϑ3

(
z +

1
2
+

1
2
τ, τ

)
, (88)

• It is symmetric with respect to z,
ϑ1(z, τ) = −ϑ1(−z, τ). (89)

• It transforms under conjugation as follows,

ϑ1(z, τ) = −ϑ1(−z̄,−τ̄). (90)
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� It supports the transformation τ → −1/τ ,

iϑ1

(
z
τ
,
−1
τ

)
= (−iτ) 1

2 e
π
τ iz

2
ϑ1(z, τ). (91)

• It is quasi-periodic,
ϑ1(z + a + bτ, τ) = eiπ(a−b(2z+bτ+1))ϑ1(z, τ) (92)

• q-series representation for its logarithm ,

Log ϑ1(z, τ) = Log(ϑ′1(0, τ)) + Log(sin(z)) + 4
∞∑
k=1

ei2πτk

k(1 − ei2πτk) sin2(kz) (93)

• q-series representation for its logarithm derivative,

ϑ′1(z, τ)
ϑ1(z, τ) = cot(z) + 4

∞∑
k=1

ei2πτk

1 − ei2πτk
sin(2kz) (94)

6.2 Hurwitz and Riemann Zeta functions
For any q, s ∈ C with Re (q) > 0 and Re (s) > 1 we let the Hurwitz zeta function be

ζq (s) =
∞∑
n=0

1
(q + n)s .

This series converges absolutely and for any q it defines an analytic function in s that admits ameromorphic continuation
to C \ {1}. Taking q = 1 yields the Riemann zeta function ζ (s) = ζ1 (s).

6.3 The Gamma function
The gamma function is defined for all complex numbers except the non-positive integers. For Re(z) > 0, it is defined
via the integral:

Γ(z) =
∫ ∞

0
xz−1e−x dx,

The recurrence relation zΓ(z) = Γ(z + 1) can be used to extend the integral formulation to all complex numbers z,
except the non-positive integers. A useful identity that is related to the Gamma function is:

• For any A ∈ N and z ∈ C \ ({0} ∪ Z−) it holds that
A∑

n=−A
Log (z + n) ≡ Log

(
Γ (A + 1 + z) Γ (A + 1 − z)

Γ (z) Γ (−z)

)
− Log z + Log (−1)A+1 (mod 2πi) (95)

Derivation. We first note that due to the recurrence relation of Γ it follows that

A∑
n=0

Log (z + n) = Log
(
Γ (z + A + 1)
Γ (z)

)
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It then follows that

A∑
n=−A

Log (z + n) =
A∑

n=0
(Log (z + n) + Log (z − n)) − Log z

≡
A∑

n=0
(Log (z + n) + Log (−z + n) + Log (−1)) − Log z (mod 2πi)

≡ Log
(
Γ (A + 1 + z) Γ (A + 1 − z)

Γ (z) Γ (−z)

)
− Log z + Log (−1)A+1 (mod 2πi)

References
[1] N.M. Temme. Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley,

2011.

[2] Victor S. Adamchik. Polygamma functions of negative order. Journal of Computational and Applied Mathematics,
100(2):191 – 199, 1998.

[3] E.T. Whittaker and G.N. Watson. A Course of Modern Analysis. Cambridge Mathematical Library. Cambridge
University Press, 1996.

[4] M.Abramowitz and I.A. Stegun. Handbook ofMathematical Functions: with Formulas, Graphs, andMathematical
Tables. Dover Books on Mathematics. Dover Publications, 2012.

[5] I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series, and Products. Elsevier Science, 2014.

128



1 The HFB wave function

The Hartree-Fock-Bogoliubov (HFB) wave function, |Φ〉 is merely a representation of many-quasi-particle state as a

vacuum with respect to Bogoliubov quasi-particles operator 1, cε :

cε |Φ〉 = 0, for all ε > 0. (1)

We note that it’s always possible to construct a groundstate that fulfill this condition:

|Φ〉 =
∏
ε>0

cε |0〉 (2)

1Bogoliubov quasi-particles are related to particle operators by a linear transformation that diagonalizes a single-particle Hamiltonian with a

particle-hole symmetry (PHS) of a system in consideration

Appendix D

Calculating the overlap between HFB wave
function
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2 Thouless representation of the HFB groundstate

The HFB groundstate can be represented as

|Ω〉 = A exp

(∑
i< j

Zi jψ
†
i ψ
†
j

)
|0〉 (3)

where ψi is a fermion annihilation operator satisfying ψi |0〉 = 0, Zi j is an skew-symmetric matrix and A is a nor-

malization constant, assuring us that 〈Ω|Ω〉 = 1. This representation is known in the literature as the Thouless

Representation[1, 2].

Proof:
The similarity transformation that diagonalizes a Hamiltonian that posses a particle-hole symmetry (PHS) is Hdiagonal =

P†HP where the unitary matrix P has the form

P = ©­«
U V̄

V Ū

ª®¬
(4)

and the columns of (U V)T are eigenstates that correspond to positive eigenenergies in an acceding order. Thus, the

annihilation operator of quasipartices is

cε =
∑
i

(ŪT
ε iψi + V̄T

ε iψ
†
i ) (5)

The groundstate must obey cε |Ω〉 = 0 for every ε > 0 so we need to find a matrix Zi j the will fulfill this requirement:

cε |Ω〉 ∝
∑
i

(ŪT
ε iψi + V̄T

ε iψ
†
i ) exp

(∑
i j

1
2

Zi jψ
†
i ψ
†
j

)
|0〉

= exp

(∑
i j

1
2

Zi jψ
†
i ψ
†
j

) ∑
i

(ŪT
ε iψi + V̄T

ε iψ
†
i + ŪT

εk

∑
j

Zk jψ
†
j )|0〉 (6)

= exp

(∑
i j

1
2

Zi jψ
†
i ψ
†
j

) ∑
i

(V̄T
ε i +

∑
j

ŪT
ε jZ ji)ψ†i |0〉 = 0

where used the relations [ψk, e
∑
i< j

Zi jψ
†
i ψ
†
j ] = ∂

ψ†
k
e

∑
i< j

Zi jψ
†
i ψ
†
j and [ψ†

k
, e

∑
i< j

Zi jψ
†
i ψ
†
j ] = ∂ψk

e
∑
i< j

Zi jψ
†
i ψ
†
j which are valid for

a matrix Zi j that is a skew-symmetric2. The last equality is true only if

V̄T
ε i +

∑
j

ŪT
ε jZ ji = 0⇒ +V̄iε −

∑
j

Zi jŪjε = V̄ − ZŪ = 0⇒ Z = (VU−1)∗. (7)

All that’s left is to assure that Z is a skew-symmetric matrix as we assumed. The unitarity of P means that

P†P = 1⇒ ©­«
U† V†

VT UT

ª®¬
©­«
U V̄

V Ū

ª®¬
=

©­«
U†U + V†V U†V̄ + V†Ū

VTU +UTV VT V̄ +UT Ū

ª®¬
=

©­«
1 0

0 1
ª®¬

(8)

2In order to take the derivative with respect to an operator we must first bring it to the left of the expression by using its commutations relations
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multiplying (P†P)∗1,2 by U−1 from the right and (U−1)T from the left we find that

(U−1)T (UTV + VTU)(U−1) = VU−1 + (U−1)TVT = 0⇒ VU−1 = −(VU−1)T . (9)

Thus, we verified that Z = (VU−1)∗ is indeed skew-symmetric.

Three properties that are worth mentioning:

1. The global phase of the groundstate is fixed such that 〈0|Ω0〉 = 1.

2. The matrix Z is gauge-invariant in the sense that all the similarity transformations,H 7→ P†HP that diagonalizes

the Hamiltonian would result the same matrix Z .

3. In order to exclude one of the operators, cε ′ which defines the groundstate through the requirement in Eq.(6),

we eliminate the ε ′ column from the matrices V and U. In addition, U is not a square matrix anymore and we

regard U−1 as a right inverse.

Proof: Although the columns of U and V are defined up to a global phase, which means that there are infinite

number of similarity transformations that would diagonalize H, the matrix Z is unique. We define a general gauge

transformation A which is simply a block diagonal matrix made of arbitrary unitary matrices for degenerate

eigenstates and just phase factors for non-degenerate eigenstates. Thus,

P 7−→ P ©­«
A 0

0 Ā
ª®¬
=⇒ U 7−→ UA

V 7−→ VA
(10)

but Z is unaltered by the gauge transformation,

Z = (VU−1)∗ 7−→ (VA(UA)−1)∗ = (VU−1)∗. (11)

Derivation of the identities:

[ψk, e
∑
i< j

Zi jψ
†
i ψ
†
j ] = ∂

ψ†
k
e

∑
i< j

Zi jψ
†
i ψ
†
j
, [ψ†

k
, e

∑
i< j

Zi jψ
†
i ψ
†
j ] = ∂ψk

e
∑
i< j

Zi jψ
†
i ψ
†
j
. (12)

First we recall the Baker-Hausdorff Lemma

eλBAe−λB = A + λ[B, A] + λ
2

2!
[B, [B, A]] + . . . + λ

n

n!
[B, [B, [B, . . . , [B, A]]]] + . . . .
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In the case that [B, [B, A]] = 0 we get [A, e−λB] = e−λBλ[B, A]. We take A = ψk, B =
∑

i j Zi jψ
†
i ψ
†
j and λ = − 1

2

for which,

AB =
∑
i j

Zi jψkψ
†
i ψ
†
j =

∑
i j

Zi j

(
ψ†i δki − ψ†i

(
δk j − ψ†jψk

))
=

∑
i j

Zi j

(
ψ†i δki − ψ†i δk j

)
+ BA.

In addition, B[B, A] = [B, A]B since ψ†i ψ
†
jψ
†
k
= ψ†

k
ψ†i ψ

†
j so [B, [B, A]] = 0. Now assuming that Z is a skew-

symmetric matrix we get

[
ψk, e

1
2 Zi jψ

†
i ψ
†
j

]
=

1
2

e
1
2 B

∑
i

(Zki − Zik)ψ†i = e
1
2 B

∑
i

Zkiψ
†
i =

∂

∂ψ†
k

e
1
2 B (13)

where in order take the derivative with respect to an operator we must first anticommute it through until it adjacent

to the derivative.

Next, we take A = ψ†
k
, B =

∑
i j Zi jψ

†
i ψ
†
j and λ = − 1

2 . Since ψ†i ψ
†
jψ
†
k
= ψ†

k
ψ†i ψ

†
j , BA = AB and we get[

ψ†
k
, e

1
2
∑

i j Zi jψ
†
i ψ
†
j

]
= ∂

∂ψk
e

1
2 B = 0.

3 Thouless representation of many-quasi-particle states

The trick is to represent quasi-particle excitations as HFB vacua by exchanging the role of particle and hole creation

operators [1, 3, 4]. Let us elucidate this statement by constructing an one-quasi-particle state. We take, for instance,

with a fully paired vacuum

|Φ0〉 =
N∏
i=1

cεi |0〉 (14)

and add a single excitation

|Φ1〉 = c†ε1 |Φ0〉 (15)

This one-quasi-particle state is a vacuum to the operators (c̃ε1, c̃ε2, ..., c̃εN ) with

c̃1 = c†ε1, c̃ε2 = cε2, ..., c̃εN = cεN . (16)

This is merely an exchange of a quasi-particle particle annihilation operator, cε1 with its hole counterpart, c−ε1 .

This can easily understood by: a) writing explicitly the basis transformation of the creation-annihilation operators

c†ε =
∑

i

(
uiεψ

†
i + v

i
εψi

)
and cε =

∑
i

(
ūiεψi + v̄

i
εψ
†
i

)
. b) noticing that the PHS implies that c†−ε =

∑
i

(
v̄iεψ

†
i + ūiεψi

)
which leads to a relationship between the creation-annihilation operators, c†ε = c−ε . Thus, the exchange is practically

obtained by replacing columns 1 in the matrices U and V by columns 1 in the matrices V̄ and Ū, respectively. In order
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to obtain a n quasi-particles state from a fully paired groundstate, we repeat the transformation,

(Ui j,Vi j) ←→ (V̄i j, Ūi j) with 1 ≤ i ≤ N, (17)

for n different columns. In the special case of a system with zero energy single-particle excitations, this method can be

used to change the parity of the groundstate.

4 The evolution of a many-quasi-particle states

Here we describe a procedure to evolve in time many-quasi-particle state in terms of single particle evolution. Since

quasi-particle excitations can be represented as HFB vacua, |Φ〉 with respect to a set of Bogoliubov quasi-particles

operator that fulfill the condition

cε |Φ〉 = 0, for all ε > 0, (18)

the evolution of the wave function is determined by the evolution of each Bogoliubov quasi-particle and the vacuum,

if it’s not an eigenstate of the Hamiltonian.3 The quasi-particle operators at time t are

cε (t) = P†(0)U†(t)ψx(0) ≡ P†(t)ψx(0) (19)

whereψx(0) = (ψx1, ψx2 . . . ψxN , ψ
†
x1, ψ

†
x2 . . . ψ

†
xN )T and cε (t) = (cε1,t, cε2,t . . . cεN ,t, c

†
−ε1,t

, c†−ε2,t
. . . c†−εN ,t )T areNambu

spinors, U(t) = e−iHt is the evolution operator and P(0) is the diagonalizing matrix of the Hamiltonian at time t = 0

which the has form P(0) = ©­«
U(0) V̄(0)
V(0) Ū(0)

ª®¬
. Thus, the wave function |Φ〉 at time t is

|Φ(t)〉 = A exp

(∑
i< j

Zi jψ
†
i ψ
†
j

)
|0(t)〉, (20)

where Z(t) = (V(t)U−1(t))∗ and A is a normalization constant.

One last caveat - a groundstate at time t > 0 is possibly an excited state with respect to the quasi-particle operators at

time t = 0.

5 Thousless’ theorem for changing a reference vacuum

Starting with a general product wave functions |Φ0〉 which is the vacuum to quasi-particle operators β that posses

PHS (β†−ε = βε ), any other general product wave function |Φ1〉 which is not orthogonal to |Φ0〉 may be expressed in
3If the vacuum state also evolves in time, as it is not an eigenstate of the Hamiltonian, the procedure described here is not straightforward to

implement and, probably, use of many-body evolution operator is unavoidable.
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the form

|Φ1〉 = A exp

(∑
i< j

Zi j β
†
i β
†
j

)
|Φ0〉 (21)

where Z is a skew-symmetric matrix and A is a normalization constant.[1, 2]

Proof:
To prove this theorem we start with two sets of quasi-particle operators β, β† and γ, γ† and their groundstates, |Φ0〉 and
|Φ1〉,respectively. The two sets are related to a common set of fermion operators c, c† by two unitary transformations

P(0) and P(1) that posses a PHS4:

β† = c†P(0) and γ† = c†P(1), (22)

where P(i) =
©­«
U(i) V̄(i)

V(i) Ū(i)

ª®¬
with i = 1, 2 and c† = (c† c), β† = (β† β) and γ† = (γ† γ) are Nambu spinor, i.e. c = τxKc†

(K is the complex conjugation operator). Next, we express the operators γ, γ† in terms of the operators β, β†:

γ† = β†P†(0)P(1) ≡ β†P(0,1) (23)

where P in terms of the block matrices U(i) and V(i) is

P(0,1) = P†(0)P(1) =
©­«
U†(0)U(1) + V†(0)V(1) U†(0)V̄(1) + V†(0)Ū(1)

VT
(0)U(1) +UT

(0)V(1) VT
0 V̄(1) +UT

(0)Ū(1)

ª®¬
≡ ©­«

U(0,1) V̄(0,1)

V(0,1) Ū(0,1)

ª®¬
(24)

The Onishi formula shows that the norm of the overlap between the two states |Φ0〉 and |Φ1〉 is
√|detU(0,1) |. Thus,

non orthogonality of |Φ0〉 and |Φ1〉 means that we can invert U(0,1)5. We proceed by defining a transformation that

preserves the PHS and does not mix the creation and annihilation operators γ†ε , γε (γε = γ†−ε ):

(
γ̃†ε γ̃†−ε

)
=

(
γ†ε γ†−ε

) ©­«
U−1
(0,1) 0

0 Ū−1
(0,1)

ª®¬
=

(
β†ε β†−ε

) ©­«
I Z(0,1)

Z̄(0,1) I

ª®¬
(25)

where Z(0,1) ≡
(
V(0,1)U−1

(0,1)
)∗

and in the last equality we simply used the relation between γ† and β†. Since γ and γ̃

share the same vacuum, |Φ1〉, it’s enough to show that γ̃ annihilates the Thouless’ represention of |Φ1〉 with respect to
the reference wave function |Φ0〉, appearing in Eq.(21):

γ̃ε exp
(

1
2

Zi j β
†
i β
†
j

)
|Φ0〉 = (Ziε β

†
i + Iiε βi) exp

(
1
2

Zi j β
†
i β
†
j

)
|Φ0〉 (26)

= exp
(

1
2

Zi j β
†
i β
†
j

)
(Ziε β

†
i + βε +

1
2

Zε j β
†
j −

1
2

Ziε β
†
i )|Φ0〉 = 0

4We assume dim
(
P(0)

)
= dim

(
P(1)

)
.

5We recall thatU(0,1) is invertible if only if detU(0,1),0

134



where we used the Einstein summation rule and Z refers to Z(0,1). As explained in section 3, every many-quasi-particle

state can be represented as HFB vacua for properly defined new quasi-particle operators. This trick, which completes

the proof, is valid for any chosen reference frame by applying it on the γ†ε , γε operators.

A few remarks that are worth mentioning:

1. The normalization constant is given by the Onishi formula (explained in the following sections),

A =
√
〈φ1 |φ1〉 =

√
| det U(0,1) | = |〈Φ0 |Φ1〉|, (27)

where |φi〉 is the unnormalized state that correspond to |Φi〉.

2. The global phase of HFB states in the Thouless representation has implicitly fixed by requiring 〈Φ0 |Φi〉 = 1,

where |Φ0〉 is the common reference frame of the states |Φi〉. This means that the phase of the states |Φi〉 is
always relative to the phase of |Φ0〉, but the phase of the overlap between two different state, 〈Φi |Φj〉 do not

depend on their common reference state.

3. When 〈Φ0 |Φi〉 = 0 the best practical strategy is to use another reference wave function instead. If the aim is to

calculate the overlap 〈Φi |Φj〉 than the new reference HFB wave function has to be close to both |Φi〉 and |Φj〉.

4. The matrix Z itself is not gauge-invariant since it depends on the global phases of the single-particle eigenstates

of the reference system. However, the overlap between two many-quasi-particle states that share a common

reference wave function is gauge-invariant. Thus, the overlap does not depend on the global phases that multiply

the columns of P(0) and P(1).

Proof: We define a general gauge transformation A which is simply a block diagonal matrix made of arbitrary

unitary matrices for degenerate eigenstates and just phase factors for non-degenerate eigenstates,

P(i) 7−→ P(i)
©­«
A(i) 0

0 Ā(i)
ª®¬
=⇒ U 7−→ UA(i)

V 7−→ VA(i)
. (28)

Thus,

P(0,1) = P†(0)P(1) 7−→ P′(0,1) =
©­«
Ā(0) 0

0 A(0)
ª®¬

P†(0)P(1)
©­«
A(1) 0

0 Ā(1)
ª®¬

=⇒ U ′(01) = Ā(0)U(01)A(1)
V ′(01) = A(0)V(01)A(1)

(29)

=⇒ Z̄ ′(01) = V ′(01)U
′−1
(01) = A0V(01)A1Ā1U−1

(01)A0 = A0V(01)U−1
(01)A0.
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By Robledo’s formula, The overlap of the two unnormalized states is proportional to

Pf ©­«
Z ′(01) −I

I −Z̄ ′(02)

ª®¬
= Pf


©­«

0 Ā0

A0 0
ª®¬
©­«

Z(01) −I

I −Z̄(02)

ª®¬
©­«

0 A0

Ā0 0
ª®¬


(30)

= Pf ©­«
Z(01) −I

I −Z̄(02)

ª®¬
det ©­«

0 A0

Ā0 0
ª®¬

(31)

= Pf ©­«
Z(01) −I

I −Z̄(02)

ª®¬
. (32)

In the last step we used the following properties:

(a) det(cA) = cn det(A) where n = dim(A).

(b) det ©­«
A B

C D

ª®¬
= det(AD − BC) when CD = DC.

(c) Simultaneous interchange of two different rows and corresponding columns changes the sign of the Pfaffian.

In addition, we give another proof by calculating the overlap of two unnormalized states using Read’s formula (which

is more familiar but accurate only up to a sign),
√

det(I − Z̄ ′(01)Z
′
(02)) =

√
det(A(0)(I − V(01)U−1

(01)V̄(02)Ū−1
(02))Ā(0)) =

√
det(I − Z̄(01)Z(02)). (33)

6 Robledo’s formula for the overlap of HFB wave functions

The overlap between two unnormalized HFB wave functions,

|φk〉 = exp

(∑
i< j

Z (k)i j β
†
i β
†
j

)
|Φ0〉 with k = 1, 2 (34)

that share a common set of quasi-particle operators and a corresponding reference wave function is

〈φ1 |φ2〉 = SNpfZ (35)

it terms of the phase SN = (−1)N (N+1)/2 and the 2N × 2N skew-symmetric matrix

Z = ©­«
Z (2) −I
I −Z̄ (1)

ª®¬
. (36)

Proof:
The proof follows Robledo’s mathematically elegant formulation which is based on fermion coherent states[5].
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Intermezzo - fermion coherent states. The fermion coherent states |ζ〉 are defined as eigenstates of the quasi-particle

annihilation operators,

βk |ζ〉 = ζk |ζ〉 (37)

and similarly, the adjoint of the coherent state is

〈ζ |β†
k
= ζ∗k 〈ζ |, (38)

where the eigenvalues ζk and ζ∗
k
are generators in Grassmann algebra that are not connected by complex conjugation.

The coherent states satisfy a closure relation

I =

∫
dµ(ζ)|ζ〉〈ζ | (39)

where the metric of the integral is given by dµ(ζ) = e−
∑

i ζ
∗
i ζi

∏
j dζ∗j dζj . The subject of fermion coherent states is

covered in many textbooks about many-body quantum systems[6, 7, 8].

Evaluation of the overlap. To calculate the overlap between two unnormalized HFB wave functions,

|φk〉 = exp

(∑
i< j

Z (k)i j β
†
i β
†
j

)
|Φ0〉 with k = 1, 2 (40)

that share a common set of quasi-particle operators and a corresponding reference wave function, the closure relation

Eq.(39) is inserted to obtain

〈φ1 |φ2〉 =
∫

dµ(ζ)〈Φ0 | exp

(
1
2

∑
i j

Z̄ (1)i j βj βi

)
|ζ〉〈ζ | exp

(
1
2

∑
i j

Z (2)i j β
†
i β
†
j

)
|Φ0〉 (41)

Using now Eqs. (37) and (38) one arrives to

〈φ1 |φ2〉 =
∫

dµ(ζ) exp

(
1
2

∑
i j

Z̄ (1)i j ζjζi

)
exp

(
1
2

∑
i j

Z (2)i j ζ
∗
i ζ
∗
j

)
(42)

where the property |〈Φ0 |ζ〉|2 = 1 is used6. The above integral can can be written in a more compact way by introducing

the Nambu spinor ζT = (ζ∗1 , ζ∗2 , ...ζ∗N, ζ1, ζ2, ...ζN ) and a skew symmetric matrix,

Z = ©­«
Z (2) −I

I −Z̄ (1)
ª®¬

(43)

as

〈φ1 |φ2〉 =
∫ ∏

i

(dζ∗i dζi) exp
(

1
2
ζTZζ

)
. (44)

6This is easy to deduce from the explicit form of fermion coherent state,
∏

i (1 − ζiβ†i |Φ0 〉 and recalling that the operators and generators fulfill
the relations: {ζi, c j } = 0 and (ζic j )† = c†j ζ

∗
i where ζi denotes a Grassmann variable and c j is an operator.
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The skew-symmetric matrixZ can always be transformed to canonical form by means of a unitary transformation M ,

Z = M

©­­­­­­­­­­­­­­«

0 . . . 0 λ1 0 0
...

. . .
... 0

. . . 0

0 . . . 0 0 0 λN

−λ1 0 0 0 . . . 0

0
. . . 0

...
. . .

...

0 0 −λN 0 . . . 0

ª®®®®®®®®®®®®®®¬

MT ≡ MZcMT (45)

where λ1, . . . , λN are non-negative real numbers[9]. Moreover, the new Nambu spinor ηT = (η∗1, . . . , η∗N, η1, . . . , ηN ) =
ζT M retains the structure of the original spinor ζ . The overlap in Eq. (44) becomes

〈φ1 |φ2〉 = det M
∫ ∏

i

(dη∗i dηi) exp
(

1
2
ηTZcη

)
=

det M
∫ ∏

i

(dη∗i dηi) exp

(
N∑
i=1

λiη
∗
i ηi

)
= (−1)N det M

N∏
i=1

λi, (46)

where the Jacobian that correspond to the transformation is det−1(M̄) = det(M) , as opposed to the Jacobian of

complex numbers algebra which would be det(M̄). Moreover, the factor (−1)N originates from the integration over

a Grassmannian Gaussian,
∫
dη∗i dηie

λiη
∗
i ηi = −λi . The final expression can be cast in terms of the pfaffian of a

skew-symmetric matrix. The connection between the product of λi’s and the pfaffian reads

N∏
i=1

λi = (−1)N (N−1)/2pf(Zc) (47)

and is a consequence of the relation7

det(R) = (−1)N (N−1)/2pf ©­«
0 R

−RT 0
ª®¬
, (48)

and we take the matrix R to be

R =
©­­­­«

λ1
. . .

λN

ª®®®®¬
. (49)

Using the property

det(M)pf(Zc) = pf(MTZcM) = pf(Z) (50)

7Zc = iσy ⊗ A where A is a diagonal matrix with entries λ1, . . . , λN . However, Z can also brought to another canonical forms, Z̃c =

A ⊗ iσy . In this case
∏N

i=1 λi = pf(Z̃c ) and the factor (−1)N (N−1)/2 would raise from the different integration order, (∏N
k=1 η

∗
k
)(∏N

k=1 ηk ) =
(−1)N (N−1)/2 ∏N

k=1(η∗kηk ). Explanation of the law of linear transformation can be found in page 35 in of Reference [7].
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the final result is obtained,

〈φ1 |φ2〉 = sNpf
©­«

Z (2) −I

I −Z̄ (1)
ª®¬
, (51)

where sN = (−1)N (N+1)/2.

7 The overlap norm of HFB states (Onishi formula)

Using the relation

pf(A)2 = det(A), (52)

to write Robledo’s formula in terms of a determinant yields

〈φ1 |φ2〉 = sNpf(Z) ∝

√√√√√
det ©­«

Z (2) −I

I −Z̄ (1)
ª®¬
. (53)

The right expression in the equality gives overlap of the two states only up to a sign as consequence of the determinant

being equal to the square of a pfaffian. Our next step is to reduce the dimension of matrix Z for which we calculate

the determinant. This is achieved by using an identity for block matrices,

det ©­«
A B

C D

ª®¬
= det(AD − BC) (54)

where A,B,C and D are square matrices of the same order with complex coefficients and CD = DC. Thus, up to a

sign, the overlap between two states reads

〈φ1 |φ2〉 ∝ det(I − Z (2) Z̄ (1)) = det(I − Z̄ (1)Z (2)), (55)

where in the last equality we used Sylvester’s determinant identity[10],

det(I + AB) = det(I + BA). (56)

Eq. (55) is known as Onishi formula which is the usual expression for the norm.

Finally we are in position to write a simple expression for the normalization constant of a HFB wave function,

〈φ1 |φ1〉 =
√

det
(
I − Z̄ (1)Z (1)

)
=

√
det

(
I + (UT

(1))−1VT
(1)V̄(1)Ū

−1
(1)

)

=

√
det

(
UT
(1))−1

(
UT
(1)Ū(1) + VT

(1)V̄(1)
)

Ū−1
(1)

)
=

√
det

(
(UT
(1))−1Ū−1

(1)
)

(57)

=

√
det

(
(U−1
(1) )T Ū−1

(1)
)
=

���det U−1
(1)

��� =
���� 1
det U(1)

����
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where UT
(0)Ū(0) + VT

(0)V̄(0) = I because P†(0)P(0) = I (see Eq.(8)).

Similarly, up to a sign, the overlap between two different unnormalized HFB states is,

〈φ1 |φ2〉 =
√

det
(
I − Z̄ (1)Z (2)

)
=

√
det

(
I + (UT

(1))−1VT
(1)V̄(2)Ū

−1
(2)

)

=

√
det

(
(UT
(1))−1

(
UT
(1)Ū(2) + VT

(1)V̄(2)
)

Ū−1
(2)

)
=

√
det

(
(UT
(1))−1 U(2,1) Ū−1

(2)
)

(58)

=

√
det

(
(U−1
(1) )TU(2,1)Ū−1

(2)
)
=

√
det U(2,1)

det Ū(2) det U(1)
.

By using Eq.(57), we obtain the overlap between two different normalized HFB states -

〈Φ1 |Φ2〉 =
√��det U(2)

�� ��det U(1)
��

det Ū(2) det U(1)

√
det U(2,1). (59)

The first root can contribute only a phase as its magnitude is always one. The second root is invariant under the change

of a reference wave function as P(2,1) ≡ P†(2)P(1) = P†(0,2)P(0,1).

The analog of Onishi formula for a regular metal
The many-body ground state of the system is

|Ω(t)〉 =
∏
ε ≤µ

c†ε (t)|0〉 =
∏
ε ≤µ

∑
j

V̄ j
ε ψ
†
j (t)|0〉 = det

(
V ′†(t)

) ∏
j

ψ†j |0〉. (60)

where V ′i, j =



Vi, j, j ≤ µ
0 j > µ

.

Using the result above we find that the overlap of 〈Ω(0)|Ω(t)〉 is

〈Ω(0)|Ω(t)〉 = 〈Ω(0)|
(∏

j

ψ†j

)†
det (V ′(0)) det

(
V ′†(t)

) ∏
j

ψ†j |0〉 = det
(
V ′†(t)V ′(0)

)
, (61)

which is the analog of Onishi formula for a regular metal.

Proving the identity - P(2,1) ≡ P†(2)P(1) = P†(0,2)P(0,1).

In order to prove the relation it is enough to show that:

1. U(1,2) = U†(0,1)U(0,2) + V†(0,1)V(0,2)
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Proof:

(U†0U1 + V†0 V1)†(U†0U2 + V†0 V2) + (VT
0 U1 +UT

0 V1)†(VT
0 U2 +UT

0 V2) =

(U†1U0 + V†1 V0)(U†0U2 + V†0 V2) + (U†1 V̄0 + V†1 Ū0)(VT
0 U2 +UT

0 V2) =

U†1 (U0U†0 + V̄0VT
0 )︸             ︷︷             ︸

I

U2 + V†1 (V0V†0 + Ū0UT
0 )V2︸                ︷︷                ︸

I

+

U†1 (U0V†0 + V̄0UT
0 )︸             ︷︷             ︸

0

V2 + V†1 (V0U†0 + Ū0VT
0 )︸             ︷︷             ︸

0

U2 =

U†1U2 + V†1 V2 = U1,2 (62)

2. V(1,2) = VT
(0,1)U(0,2) +UT

(0,1)V(0,2)

Proof:

(VT
0 U1 +UT

0 V1)T (U†0U2 + V†0 V2) + (U†0U1 + V†0 V1)T (VT
0 U2 +UT

0 V2) =

(UT
1 V0 + VT

1 U0)(U†0U2 + V†0 V2) + (UT
1 Ū0 + VT

1 V̄0)(VT
0 U2 +UT

0 V2) =

UT
1 (V0U†0 + Ū0VT

0 )︸             ︷︷             ︸
0

U2 +UT
1 (V0V†0 + Ū0UT

0 )︸             ︷︷             ︸
I

V2+

VT
1 (U0U†0 + V̄0VT

0 )︸             ︷︷             ︸
I

U2 + VT
1 (U0V†0 + V̄0UT

0 )︸             ︷︷             ︸
0

V2 =

UT
1 V2 + VT

1 U2 = V1,2 (63)

8 Zero-modes

The standard procedure for calculating the overlap between two many-body states assume that all positive energy

single-particle eigenstates are related to the negative ones by the PHS operator. However, it is not granted that

degenerate eigenstates would obey this relation and one must construct such states. The case of zero-modes is more

complicated, since not only that they are degenerate, it is not obvious which one of the zero-modes constructs the

many-body groundstate. In this section we describe a procedure to construct zero-modes which are related by the PHS

operator and a scheme to determine the zero-mode that build to many-body groundstate.
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8.1 Construction of zero-modes related by the PHS operator

The PHS, H = τxH∗τx , assures us that two non-degenerate states with energy |ε | > 0 are related by |ε〉 = τxK |−ε〉. In
the case of zero-modes, ε = 0 we need to construct two orthonormal states that also maintain this relation,

|v1〉 = a|u1〉 + b|u2〉 (64)

|v2〉 = Tv1 = āT |u1〉 + b̄T |u2〉 (65)

where T is the PHS operator, T = τxK (K is complex conjugate operator).

The requirement that v1 (and v2) are normalized gives a constrain on a and b,

〈v1 |v1〉 = 1⇒ |a|2 + |b|2 = 1⇒ a = | cosα |eiβ, b = | sinα |eiγ . (66)

The second requirement, namely, that the two zero-mode are orthogonal yields the following constrain:

〈v1 |v2〉 = ā2〈u1 |T |u1〉 + b̄2〈u2 |T |u2〉 + āb̄ (〈u1 |T |u2〉 + 〈u2 |T |u1〉) = 0. (67)

Using the identity,

〈u2 |T |u1〉 = 〈Tu1 |u2〉∗ = 〈u1 |T† |u2〉 = 〈u1 |T |u2〉 (68)

the relation can be further simplified,

〈v1 |v2〉 = ā2 〈u1 |T |u1〉︸     ︷︷     ︸
A

+b̄2 〈u2 |T |u2〉︸     ︷︷     ︸
B

+āb̄ 2〈u1 |T |u2〉︸       ︷︷       ︸
C

= 0. (69)

In the case of C = 0, the constrain is simplified further to Aā2 + Bb̄2 = 0 and together with the first constrain

|a|2 + |b|2 = 1 we get

|a|2e−2βA + (1 − |a|2)e−i2γB = 0⇒ |a|2(Ae−i2β − Be−i2γ) + Be−i2γ = 0⇒ |a|2 = 1
1 − A

B ei2(γ−β) (70)

with γ− β = − 1
2arg

A
B + (n+ 1

2 )π and n ∈ Z because |a| < 1. Since the zero-modes are defined up to a phase it’s enough

to determine the relative phase between a and b.8

If C , 0, combing the two constrains (Eq.66 and Eq.69) yields,

|a|2︸︷︷︸
x

e−i2βA︸ ︷︷ ︸
A′

+(1 − |a|2) e−i2γB︸ ︷︷ ︸
B′

+|a|
√

1 − |a|2 Ce−i(β+γ)︸     ︷︷     ︸
C′

= 0. (71)

8Out of the infinite possibilities to choose the phases β and γ, it is convenient to pick β = 1
2 argA and γ = 1

2 argB.
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subtracting the term which is ∝ C from equality a squaring both sides gives

((A′ − B′)x + B′
)2
= C ′2x(1 − x). (72)

This is just a quadratic polynomial in x:

⇒ (A′ − B′)2x2 + 2(A′ − B′)B′x + B2 = C ′2x − C ′2x2

⇒ ((A′ − B′)2 + C ′2
)

︸                 ︷︷                 ︸
M

x2 +
(
2(A′ − B′)B′ − C ′2

)
︸                     ︷︷                     ︸

N

x + B′2︸︷︷︸
L

= 0 (73)

Let us choose A′, B′ and C ′ to be real (we assume that it is always possible). Thus, the phases are

γ =
1
2
argB, β = argC − γ + πm = argC − 1

2
argB + πm and also β =

1
2
argA +

π

2
n. (74)

Only if the last two expressions for β are consistent, the assumption {A′, B′,C ′} ∈ R is valid. Thus, one should check

that

argC − 1
2
argA − 1

2
argB =

π

2
l . (75)

All is left to determine |a|2 by solving the quadratic polynomial, which now has real coefficients,

|a|2 = −N +
√

N2 − 4ML
2M

. (76)

The properties of the complex-conjugation operator

1. The complex conjugate operator Kz = z, is an antiunitary operator. This implies that K(α |a〉 + β|b〉) =
ᾱK |a〉 + β̄K |b〉 and 〈Ka|Kb〉 = 〈a|b〉∗.

2. This adjoint of K is defined by 〈Ka|b〉 = 〈a|K† |b〉∗.

3. By definition K2 = 1, thus K2 is unitary.

4. The adjoint of K is also antiunitary and KK† = K†K = 1.

This property should not be confused with the definition of unitary operators, as K is not complex linear

and the adjoint of K is defined differently.

Proof:

〈a|a〉∗ = 〈Ka|Ka〉 = 〈a|K†K |a〉 ⇒ K†K = 1

(KK†)K2 = K(K†K)K = K2 ⇒ KK† = 1.
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5. The adjoint of K fulfills K† = K .

Proof:

K† = K†K2 = (K†K)K = K ⇒ K† = K .

8.2 Thouless representation when zero modes are present

In order to construct the BCS many-body groundstate, we start with the bare vacuum |0〉 and multiply it by a product of

quasi-particle annihilation operators with positive energy. In the end multiply it with half of the zero-mode operators,

|Φ0〉 =
∏
i

c0i

∏
j

cεi |0〉. (77)

In most cases, there is only one set of zero-modes for which the construed state won’t vanishes identically. This point

is better understood by considering the Thouless representation of the groundstate,

|Ω〉 =
√
| det U | exp

(∑
i< j

Zi jψ
†
i ψ
†
j

)
|0〉, Z = (VU−1)∗. (78)

When the groundstate vanishes identically, det U = 0 and since 〈0|Ω〉 =
√
| det U | it means that groundstate is

orthogonal to the bare vacuum. In addition, det U = 0 means that U is singular and Z is undefined. Practically, we

identify the zero-modes for which det U , 0 as the annihilation operators and use them to contract the groundstate.

Constructing the Kitaev chain groundstates (even and odd parity)

The Kitaev chain is a lattice model of a p-wave superconductor in 1D

H = −µ
∑
x

c†xcx −
∑
x

(tc†xcx+1 + ∆cxcx+1 + h.c), (79)

where µ is the chemical potential, t the nearest-neighbor hopping, and ∆ the coupling constant.

Let us consider the case µ = 0, t = ∆ = −1 for a lattice of 4 sites,
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H =
3∑

x=1
(c†xcx+1 + cxcx+1 + h.c) = 1

2

©­­­­­­­­­­­­­­­­­­­«

c†1
c†2
c†3
c†4
c1

c2

c3

c4

ª®®®®®®®®®®®®®®®®®®®¬

T ©­­­­­­­­­­­­­­­­­­­«

0 1 0 0 0 −1 0 0

1 0 1 0 1 0 −1 0

0 1 0 1 0 1 0 −1

0 0 1 0 0 0 1 0

0 1 0 0 0 −1 0 0

−1 0 1 0 −1 0 −1 0

0 −1 0 1 0 −1 0 −1

0 0 −1 0 0 0 −1 0

ª®®®®®®®®®®®®®®®®®®®¬

©­­­­­­­­­­­­­­­­­­­«

c1

c2

c3

c4

c†1
c†2
c†3
c†4

ª®®®®®®®®®®®®®®®®®®®¬

. (80)

Next, we rewrite the fermion operators in terms of Majorana fermion operators,

γx = i
cx − c†x√

2
, ηx =

cx + c†x√
2

(81)

This yields

H =i
3∑

x=1
γxηx+1 = i

(
γ1 γ2 γ3 γ4

) ©­­­­­­­«

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

ª®®®®®®®¬

©­­­­­­­«

η1

η2

η3

η4

ª®®®®®®®¬
. (82)

The Hamiltonian eigenstates in the fermion basis are:

ε
=

0
ε
=
+

1
ε
=
+

1
ε
=
+

1
ε
=

0
ε
=
−1

ε
=
−1

ε
=
−1

U =
1
2

©­­­­­­­­­­­­­­­­­­­«

1 1 0 0 −1 1 0 0

0 1 1 0 0 −1 1 0

0 0 1 1 0 0 −1 1

1 0 0 1 1 0 0 −1

−1 1 0 0 1 1 0 0

0 −1 1 0 0 1 1 0

0 0 −1 1 0 0 1 1

1 0 0 −1 1 0 0 1

ª®®®®®®®®®®®®®®®®®®®¬

(83)
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Γ0+ = c1 + c4 − c†1 + c†4

Γ0− = −c1 + c4 + c†1 + c†4

Γ1 = c1 + c2 + c†1 − c†2 (84)

Γ2 = c2 + c3 + c†2 − c†3

Γ3 = c3 + c4 + c†3 − c†4

|Ω〉 = Γ3Γ2Γ1 |0〉 = Γ3Γ2(|1000〉 − |0100〉) = Γ3(−|1100〉 + |1010〉 − |0000〉 − |0110〉) =

− |1110〉 + |1101〉 − |1000〉 − |1011〉 − |0010〉 + |0001〉 + |0100〉 + |0111〉 (85)

Γ0+ |Ω〉 = −|0110〉 + |1111〉 + |0101〉 + |1100〉 − |0000〉 + |1001〉 − |0011〉 − |1010〉 + |1010〉

+ |0011〉 + |0000〉 − |1001〉 − |1100〉 − |0101〉 + |0110〉 − |1111〉 = 0 (86)

Γ0− |Ω〉 = +|0110〉 + |1111〉 − |0101〉 + |1100〉 + |0000〉 + |1001〉 + |0011〉 − |1010〉

− |1010〉 + |0011〉 + |0000〉 + |1001〉 + |1100〉 − |0101〉 + |0110〉 + |1111〉 =

2(|0110〉 + |1111〉 − |0101〉 + |1100〉 + |0000〉 + |1001〉 + |0011〉 − |1010〉) (87)

⇒ Γ0− |Ω〉 = exp(gi jc†i c†j ), g =

©­­­­­­­«

0 1 −1 1

−1 0 1 −1

1 −1 0 1

−1 1 −1 0

ª®®®®®®®¬
(88)

9 The Berry connection

The closed-path Berry phase defined above can be expressed as

γn =

∫
C

dR · An(R) (89)

where

An(R) = i〈n(R)|∇R |n(R)〉 (90)
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is a vector-valued function known as the Berry connection (or Berry potential).

In what follows, we use the expression of the overlap between two different states to derive an explicit expression of

the Berry connection.

− iA(R) ≡ 〈Φ(R)|∇R |Φ(R)〉 = lim
R′→R

∇R〈Φ(R′)|Φ(R)〉 = lim [A(∇RB)SNpfZ + ABSN∇RpfZ] (91)

where in the last step we used Robledo’s formula for the overlap between to states,

〈Φ(R′)|Φ(R)〉 =
√
| det U(R)|︸         ︷︷         ︸

A

√
| det U(R′)|︸          ︷︷          ︸

B

SNpf
©­«

Z(R) −1

1 −Z∗(R′)
ª®¬︸                 ︷︷                 ︸

Z

, Z = (VU−1)∗. (92)

Using the two relations,

∂xpfM =
1
2
pfMtr(M−1∂xM), ∂x det M = det Mtr(M−1∂xM) (93)

we find that

−iA(R) = lim
R′→R

[
B

4A3 (det U∗ ∇R det U + det U ∇R det U∗)SNpfZ + 1
2

ABSNpfZtr
(
Z−1∇RZ

)]

=
1
2

[
tr(U−1∇RU) + tr(U−1∇RU)∗ + lim

R′→R
tr(Z−1∇RZ)

]
〈Φ(R)|Φ(R)〉

= Re tr(U−1∇RU) + 1
2

lim
R′→R

tr(Z−1∇RZ).

In order to simplify the expression further, we recall an identity of inverse 2x2 block matrix,

©­«
A B

C D

ª®¬
−1

=
©­«
(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1
ª®¬

(94)

and substitute A = Z ,B = −1 and C = 1,

Z−1 =
©­«

Z −1

1 D

ª®¬
−1

=
©­«
(Z + D−1)−1 (Z + D−1)D−1

−D−1(Z + D−1)−1 D−1 − D−1(Z + D−1)−1D−1
ª®¬
. (95)

We continue as follows, multiply the expression for Z−1 by ∇RZ, take the trace over the whole expression followed

by the limit D→ Z†,

lim
D→Z†

tr
(
Z−1
(i) ∇RZ

)
= lim

D→Z†
tr

©­­«
©­«

Z −1

1 D

ª®¬
−1 ©­«

Z ′ 0

0 0
ª®¬
ª®®¬
= lim

D→Z†
tr

(
(Z + D−1)−1Z ′

)

= tr
(
(Z + (Z†)−1)−1Z ′

)
= tr

(
(Z + (Z†)−1)−1(Z†)−1Z†Z ′

)
= tr

(
(1 + Z†Z)−1Z†Z ′

)
. (96)
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Substituting the result in Eq. (94) yields an explicit expression for the Berry connection,

− iAn(R) = 〈Φ(R)|∇R |Φ(R)〉 = Re tr(U−1∇RU) + 1
2
tr

(
(1 + Z†Z)−1Z†Z ′

)
. (97)

The Berry connection in terms of the matrix Z

In order get an expression written solely in terms of Z , we notice that

〈Φ|Φ〉 = 1⇒ ∇R〈Φ|Φ〉 = 0⇒ 〈∇RΦ|Φ〉 + 〈Φ|∇RΦ〉 = 0

=⇒ 〈Φ|∇RΦ〉 = −〈∇RΦ|Φ〉, (98)

and since

〈∇RΦ(R)|Φ(R)〉 = lim
R′→R

∇R〈Φ(R)|Φ(R′)〉 = lim [(∇R A)BSNpfZ + ABSN∇RpfZ]

= Re tr(U−1∇RU) + 1
2

lim tr(Z−1∇RZ), (99)

the expression 〈Φ|∇RΦ〉 = 1
2 (〈Φ|∇RΦ〉 − 〈∇RΦ|Φ〉) would depend solely on Z . In order to simplify further the

expression in Eq. (99), we recall an identity of inverse 2x2 block matrix[11],

©­«
A B

C D

ª®¬
−1

=
©­«

A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1
ª®¬

(100)

and substitute D = Z†,B = −1 and C = 1,

©­«
A −1

1 Z†
ª®¬
−1

=
©­«

A−1 − A−1(Z† + A−1)−1 A−1 A−1(Z† + A−1)−1

−(Z† + A−1)−1 A−1 (Z† + A−1)−1
ª®¬
. (101)

We continue as follows, multiply the expression forZ−1 by∇RZ, take the trace over the whole expression followed

by the limit A→ Z ,

lim
A→Z

tr
(
Z−1
(i) ∇RZ

)
= lim

A→Z
tr

©­­«
©­«

A −1

1 Z†
ª®¬
−1 ©­«

0 0

0 Z ′†
ª®¬
ª®®¬
= lim

A→Z
tr

(
(Z† + A−1)−1Z ′†

)
=

tr
(
(Z† + Z−1)−1Z ′†

)
= tr

(
(Z Z−1)(Z† + Z−1)−1Z ′†

)
= tr

(
(1 + Z†Z)−1Z ′†Z

)
, (102)

where in last step we exploited the fact that the trace is invariant under cyclic permutations, tr(A1, A2, ..., AN ) =
tr(AN, A1, ..., AN−1) for any N ∈ N and the property of invertible matrices, (AB)−1 = B−1 A−1. Substituting the

result in Eq. (99) yields

〈∇RΦ(R)|Φ(R)〉 = Re tr(U−1∇RU) + 1
2
tr

(
(1 + Z†Z)−1Z ′†Z

)
. (103)
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Combining Eq.(97) and Eq.(103) yields

〈Φ|∇RΦ〉 = 1
2
(〈Φ|∇RΦ〉 − 〈∇RΦ|Φ〉) = 1

4
tr

(
(1 + Z†Z)−1(Z†Z ′ − Z ′†Z)

)
(104)

which is the celebrated expression for the Berry connection appearing in Read’s article[12].

Numerical calculations of the Berry connection
Here we write the berry connection in terms of the matrices U,V and U−1. In addition, we use a few algebraic

manipulations so the expression includes only derivatives of U and V .

We first recall that the unitary of the eigenstates matrix gives the following identities:

©­«
U† V†

VT UT

ª®¬
©­«
U V̄

V Ū

ª®¬
= 1 ⇒ U†U + V†V = 1 VT V̄ +UT Ū = 1

U†V̄ + V†Ū = 0 VTU +UTV = 0

©­«
U V̄

V Ū

ª®¬
©­«
U† V†

VT UT

ª®¬
= 1 ⇒ UU† + V̄VT = 1 VV† + ŪUT = 1

UV† + V̄UT = 0 VU† + ŪVT = 0

Our starting point is an expression of the berry connection [12] in terms of matrix Z ,

i〈Φ|∇RΦ〉 = i
4
tr

[(
1 + Z†Z

)−1 (
Z†Z ′ −

(
Z†

) ′
Z
)]
, Z = (VU−1)∗ (105)

Next, we rewrite
(
1 + Z†Z

)−1 in term of U:[(
1 + Z†Z

)−1
]∗
=

(
1 + (VU−1)†(VU−1)

)−1
=

(
1 + (U†)−1V†VU−1

)−1
(106)

=

©­­­­«
(U†)−1

(
U†U + V†V

)
︸           ︷︷           ︸

I

U−1
ª®®®®¬

−1

= UU†.

Using this result we calculate the first term in the difference:

tr
[(

1 + Z†Z
)−1

Z†Z ′
]∗
= tr

[
UU†(U†)−1V†

(
V ′U−1 + V(U−1)′

)]
(107)

= tr
(
V†V ′

)
− tr

(
V†VU−1U ′

)
,

where in the last step we "moved" the derivative from U−1 to U using the relation

I ′ = (U−1U)′ = (U−1)′U +U−1U ′⇒ (U−1)′U = −U−1U ′ (108)

149



Using the result in Eq.(106) we calculate the first term in the difference:

tr
[(

1 + Z†Z
)−1 (

Z†
) ′

Z
]∗
= tr

[
UU†

[((
U†

)−1
)

V†
] ′

VU−1
]

(109)

= tr
[
VU†

[((
U†

)−1
) ′

V† +
(
U†

)−1 (
V†

) ′] ]
=

= tr
(
V

(
V†

) ′)
− tr

[(
U†

)−1
V†V

(
U†

) ′]
,

where in the last step we again "moved" the derivative from U−1 to U using the relation

(U−1)′U = −U−1U ′⇒ U†
[(

U†
)−1

] ′
= −

(
U†

) ′ (
U†

)−1
(110)

combing Eq.(107) and Eq.(109) the Berry connection can be written as

i〈Φ|∇RΦ〉 = i
4
tr

[
V†V ′ − V

(
V†

) ′
+

(
U†

)−1
V†V

(
U†

) ′
− V†VU−1U ′

]∗
(111)
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10 The generalized density matrix

The generalized density matrix is defined as

R = ©­«
〈Φ|ψ†mψn |Φ〉 〈Φ|ψmψn |Φ〉
〈Φ|ψ†mψ†n |Φ〉 〈Φ|ψmψ

†
n |Φ〉

ª®¬
=

©­«
ρn,m κn,m

−κ̄n,m 1 − ρ̄n,m,
ª®¬

(112)

where ρ and κ are called the normal and abnormal density (or density matrix and pairing tensor). Furthermore, the

generalized density matrix is Hermitian, idempotent (R = R2) and R admits only two eigenvalues: 0 and 1. Eigenstates

that correspond to eigenvalues zero and one are also eigenstates of the single particle Hamiltonian, H with positive and

negative energies, respectively.

In this section we derive simple expressions for the correlators ki j and ρi j , in terms of the skew-symmetric matrix,

Z = VU−1. We begin by pointing out that the derivative of the unnormalized many-body states with respect to a matrix

element of Z yields:
∂Zm,n |φ〉 =

1
2

(
ψ†mψ

†
n − ψ†nψ†m

)
|φ〉 = ψ†mψ†n |φ〉

∂Z̄m,n
|φ〉 = 〈φ| 1

2
(ψnψm − ψmψn) = 〈φ|ψnψm.

(113)

Thus, the correlators can be expressed as

κm,n =〈Φ(Z)|ψnψm |Φ(Z)〉 = lim
Z̃→Z

∂Z̄m,n
log〈Φ(Z)|Φ(Z̃)〉

κ̄m,n =〈Φ(Z)|ψ†mψ†n |Φ(Z)〉 = lim
Z̃→Z

∂Zm,n log〈Φ(Z̃)|Φ(Z)〉.
(114)

A many-body state, Φ(Z)〉 is required to vanish when a quasiparticle annihilation operator, cε acts on it,

cε |Φ(Z)〉 = 0, (115)

for any ε belonging to a certain set of single-particle eigenenergies, which characterize the |Φ(Z)〉. The annihilation
operators take the form

cε = U†ε iψi + V†ε iψ
†
i , (116)

whereUε andVε are the particle and hole parts of a single-particle eigenstate with eigenenergy ε , respectively. However,

we can use a canonical transformation to get a new set of quasiparticle annihilation operators, c̃i that depend solely on

Z ,

(U−1)†c = (U−1)†U†ψ +
(
VU−1

)†
ψ† ⇒ c̃ = ψ − Zψ†, (117)

where we used the Nambu spinors cT = (cε1, cε2, . . . , cεN ), ψT = (ψ1, ψ2, . . . , ψN ) and c̃T = (c̃1, c̃2, . . . , c̃N ). Since the
transformation is only among the quasiparticle annihilation operators, the operators c and c̃ share the same many-body

state and thus, (
ψ − Zψ†

)
|Φ(Z)〉 = 0. (118)
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Using our new set of quasiparticle annihilation operators, c̃, we manipulate the expression Φ|c̃†i c̃j |Φ〉 = 0 to get a

relation between κ and ρ in terms of Z:

〈Φ|
(
ψ†j − Z̄ jiψi

) (
ψk − Zklψ

†
l

)
|Φ〉 =

〈Φ|
(
ψ†jψk − Zklψ

†
jψ
†
l
− Z̄ jiψiψk + Z̄ jiZklψiψ

†
l

)
|Φ〉 = 〈Φ|ψ†jψ†k − Zk,lψ

†
jψ
†
l
|Φ〉 = 0 (119)

where we used the commutation relation in Eq.(13),
[
ψk, e

1
2 Zm,nψ

†
mψ
†
n

]
= e

1
2 Zm,nψ

†
mψ
†
n Zk,lψ

†
l
⇒ −Z̄i jψiψk |Φ〉 = −Z̄i, jψie

1
2 Zmn,ψ

†
mψ
†
n

(
ψk + Zk,lψ

†
l

)
|0〉

= −Z̄i, jZk,lψiψ
†
l
|Φ〉.

(120)

Thus, the relation between the normal density ρ and the anomalous density κ is

ρk, j = 〈Φ|ψ†jψk |Φ〉 = Zk,l 〈Φ|ψ†jψ†l |Φ〉 = Zk,lκ
†
l, j
⇒ ρ = Zκ† = −Z κ̄ = κZ† = −κ Z̄, (121)

where we used the properties ρ† = ρ, κ = −κT and Z = −ZT . Based on the identity in Eq.(133), we derive a simple

expression for κ in terms of Z:

k̄m,n =
〈φ|∂Zm,nφ〉
〈φ|φ〉 =

1
2

tr
[(

1 + Z†Z
)−1

Z†∂zm,n Z
]

=
1
2

([(
1 + Z†Z

)−1
Z†

]
n,m

−
[(

1 + Z†Z
)−1

Z†
]
m,n

)
= −

[(
1 + Z†Z

)−1
Z†

]
m,n

,

(122)

where we exploited the skew-symmetry of
(
1 + Z†Z

)−1 Z†. In order to prove that indeed
(
1 + Z†Z

)−1 Z† is skew-

symmetric we substitute Z = VU−1,
(
1 + Z†Z

)−1
Z† =

(
1 + (VU−1)T V̄Ū−1

)−1
(VU−1)T =

(
1 + (U−1)TVT V̄Ū−1

)−1
(U−1)TVT

=
(
(U−1)T

(
UT Ū + VT V̄

)
Ū−1

)−1
(U−1)TVT = ŪUT (U−1)TVT = ŪVT ,

(123)

and using the identity P†P = 1 we find that

(PP†)1,2 = 0⇒ UV† + V̄UT = 0⇒ ŪVT = −(ŪVT )T . (124)

Finally, it follows from the derivation above that

κ = −UV† ρ = −Z κ̄ = V̄VT . (125)

152



In what follows, we use the expression of the overlap between two different states to derive an expression for the

anomalous density matrix in terms of the Z matrix.

〈φ(Z)|∂Zm,nφ(Z)〉 = lim
Z̃→Z

∂Zm,n 〈φ(Z̃)|φ(Z)〉 = lim
Z̃→Z

SN∇RpfZ (126)

where in the last step we used Robledo’s formula for the overlap between to states,

〈φ(Z̃)|φ(Z)〉 = SNpf
©­«

Z −1

1 −Z̄

ª®¬︸     ︷︷     ︸
Z

, Z = VU−1. (127)

Using the relation,

∂xpfM =
1
2
pfMtr(M−1∂xM), (128)

we find that

〈φ(Z)|∂Zm,nφ(Z)〉 = lim
Z̃→Z

1
2

SNpfZtr
(
Z−1∇RZ

)
= lim

Z̃→Z

1
2
tr(Z−1∇RZ)〈φ(Z̃)|φ(Z)〉 (129)

In order to simplify the expression further, we recall an identity of inverse 2x2 block matrix,

©­«
A B

C D

ª®¬
−1

=
©­«
(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1
ª®¬

(130)

and substitute A = Z , B = −1, C = 1 and D = Z̃†

Z−1 =
©­«

Z −1

1 D

ª®¬
−1

=
©­«
(Z + Z̃†−1)−1 (Z + Z̃†−1)Z̃†−1

−Z̃†−1(Z + Z̃†−1)−1 Z̃†−1 − Z̃†−1(Z + Z̃†−1)−1 Z̃†−1
ª®¬
. (131)

We continue as follows, multiply the expression for Z−1 by ∂Zm,nZ, take the trace over the whole expression

followed by the limit Z̃ → Z ,

lim
Z̃→Z

tr
(
Z−1
(i) ∇RZ

)
= lim

Z̃→Z
tr

©­­«
©­«

Z −1

1 Z̃†
ª®¬
−1 ©­«

Z ′ 0

0 0
ª®¬
ª®®¬
= lim

Z̃→Z
tr

(
(Z + (Z̃†)−1)−1Z ′

)

= tr
(
(Z + (Z†)−1)−1Z ′

)
= tr

(
(Z + (Z†)−1)−1(Z†)−1Z†Z ′

)
= tr

(
(1 + Z†Z)−1Z†Z ′

)
. (132)

Substituting the result in Eq. (129) yields an explicit expression for the anomalous density matrix,

κ̄m,n = 〈Φ(Z)|ψ†mψ†n |Φ(Z)〉 =
〈φ(Z)|∂Zm,nφ(Z)〉
〈φ(Z)|φ(Z)〉 =

1
2
tr

(
(1 + Z†Z)−1Z†∂Zm,n Z

)
. (133)
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1 The s-wave superconductor

1.1 s-wave superconductor - continuum model

The s-wave continuum Hamiltonian:

H =
(
ψ†x,↑ ψx,↓

) ©­«
1

2m (−p + A)2 − µ ∆

∆ − 1
2m (p + A)2 + µ

ª®¬
©­«
ψx,↑

ψ†x,↓

ª®¬
(1)

Wenote that, in contrary to p-wave superconductor, theBogoliubov representation of the s-wave continuumHamiltonian

does not incorporate a factor of 1/2.
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1.2 s-wave superconductor - tight binding model on a square lattice

H =
∑
k,σ

c†k,σ
(

k2

2m
− µ

)
ck,σ +

∑
k

(
∆c†k↑c

†
−k↓ + ∆̄c−k↓ck↑

)
(2)

We transform from the the continuum to a square lattice using the approximation k2a2

2 ≈ 1 − cos ka and defining

t ≡ 1
2ma2 (for simplicity we assume a = 1):

H =
∑
k,σ

c†k,σ
(
−cos kx + cosky

m
− µ + 2

m

)
ckσ +

∑
k

(
∆c†k↑c

†
−k↓ + ∆̄c−k↓ck↑

)

=
∑
k,σ

c†k,σ
(−2t(cos kx + cosky) − µ + 4t

)
ckσ +

∑
k

(
∆c†k↑c

†
−k↓ + ∆̄c−k↓ck↑

)
(3)

=
∑
k,σ

c†k,σ
(
−t(cos kx + cos ky) − µ

2
+ 2t

)
ckσ − c−k,σ

(
−t(cos kx + cos ky) − µ

2
+ 2t

)
c†−kσ

+
∑

k

1
2

(
∆c†k↑c

†
−k↓ − ∆c†k↓c

†
−k↑ + ∆̄c−k↓ck↑ − ∆̄c−k↑ck↓

)
+

∑
k,σ

(
−t(cos kx + cos ky) − µ

2
+ 2t

)
︸                                        ︷︷                                        ︸

E0

In term on Nambu spinors the Hamiltonian is

H(k) = 1
2

∑
k

(
c†k↑ c†k↓ c−k↑ c−k↓

) ©­­­­­­­«

ε(k) 0 0 ∆

0 ε(k) −∆ 0

0 −∆̄ −ε(−k) 0

∆̄ 0 0 −ε(−k)

ª®®®®®®®¬

©­­­­­­­«

ck↑

ck↓

c†−k↑
c†−k↓

ª®®®®®®®¬
(4)

where ε(k) = −2t(cos kx + cos ky) − µ+ 4t. The transformation of the fermion operators form the momentum basis to

the spatial basis is

ck =
∑
x

〈k |x〉ψx =
1√
N

∑
x

e−ikxψx (5)

where N is the number of lattice sites, kn = 2πn
Na , xm = ma and 0 < m ≤ N . The momentum states form an orthogonal

set:

∑
k

exp
(
ik(xi − xj)

)
=

N∑
n=1

[
exp

(
i2πa(i − j)

Na

)]n
=




N, i = j
1−e2π(i− j)

e−
i2π(i− j)

N −1
i , j

= Nδi, j

Using the last two properties we find
∑
k

eikac†
k
ck =

1
N

∑
k,m,n

eik(m+1−m′)ac†mcm′ =
∑
m,m′

δm+1,m′c†mcm′ =
∑
m

c†mcm+1 (6)

and ∑
k

cos kac†
k
ck =

1
2

∑
k

(
eika + e−ika

)
c†
k
ck =

1
2

∑
m

(
ψ†

m+1ψm +ψ
†
mψm+1

)
. (7)
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From here it is straight forward to get the s-wave Hamiltonian in the tight-binding model,

H =
∑
m,n,σ

[
− t

(
ψ†

m+1,n,σψm,n,σ +ψ
†
m,n,σψm+1,n,σ +ψ

†
m,n+1,σψm,n,σ +ψ

†
m,n,σψm,n+1,σ

)
=

− (µ − 4t)ψ†m,n,σψm,n,σ + ∆ψ
†
m,n,↑ψ

†
m,n,↓ + ∆̄ψm,n,↓ψm,n,↑

]
(8)

158



2 The p-wave superconductor tight-binding model

2.1 Transforming from a p-wave superconductor tight-binding model of a square lattice to
the continuum limit

We begin with the p-wave lattice Hamiltonian,

H =
∑
m,n

[
−t

(
ψ†

m+1,nψm,n +ψ
†
m,n+1ψm,n

)
− 1

2
(µ − 4t)ψ†m,nψm,n

+∆
(
ψ†

m+1,nψ
†
m,n + iψ†

m,n+1ψ
†
m,n

)]
+ h.c. (9)

Our next step is to transform the Hamiltonian into momentum space. The Fourier transform of the creation and

annihilation operators combinations that appear in the Hamiltonian can be written as

ψm,n =
1√
N

∑
kx,ky

eikxma+ikynackx,ky (10)

where for a lattice size (qx, qy) we have N = qx × qy .

A translation operator transforms as

∑
m,n

ψ†
m+1,nψm,n =

1
N

∑
m,n

∑
kx,ky

∑
k̃x,k̃y

eikx (m+1)a+ikynae−ik̃xma−ik̃ynac†
kx,ky

ck̃x,k̃y =

=
1
N

∑
m,n

∑
kx,ky

∑
k̃x,k̃y

eima(kx−k̃x )eina(ky−k̃y )eiakx c†
kx,ky

ck̃x,k̃y =

=
∑
kx,ky

∑
k̃x,k̃y

δk̃x,k̃x δk̃y,k̃y eiakx c†
kx,ky

ψk̃x,k̃y
=

∑
kx,ky

eiakx c†
kx,ky

ckx,ky (11)

where assumed periodic boundary conditions, qa(k̃ − k) = 2πp with p ∈ N in order to get an expression for the

Kronecker delta -
q∑

m=1
eima(k̃−k) =

q∑
m=1

(
eia(k̃−k)

)m
=




q , k̃ = k
eiqa(k̃−k)−1
1−e−ia(k̃−k) = 0 , k̃ , k

= qδk̃,k (12)

and the conjugate transpose of the last combination yields -

∑
m,n

ψ†m,nψm+1,n =
∑
kx,ky

e−iakx c†
kx,ky

ckx,ky (13)

The sum of the translation operators in the x direction gives

∑
m,n

(
ψ†

m+1,nψm,n +ψ
†
m,nψm+1,n

)
=

∑
kx,ky

(eiakx + e−iakx )c†
kx,ky

ckx,ky = 2
∑
kx,ky

cos(akx)c†kx,ky ckx,ky (14)
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Similarly, for the y direction we have

∑
m,n

ψ†
m,n+1ψm,n =

∑
kx,ky

eiaky c†
kx,ky

ckx,ky (15)

and its conjugate transpose ∑
m,n

ψ†m,nψm,n+1 =
∑
kx,ky

e−iaky c†
kx,ky

ckx,ky (16)

The sum of the translation operators in the y direction gives

∑
m,n

(
ψ†

m,n+1ψm,n +ψ
†
m,nψm,n+1

)
=

∑
kx,ky

(eiaky + e−iaky )c†
kx,ky

ckx,ky = 2
∑
kx,ky

cos(aky)c†kx,ky ckx,ky (17)

The occupation number operator is ∑
m,n

ψ†m,nψm,n =
∑
kx,ky

c†
kx,ky

ckx,ky (18)

The interaction terms are

∑
m,n

ψ†
m+1,nψ

†
m,n =

∑
kx,ky

eiakx c†
kx,ky

c†−kx,−ky =
1
2

∑
kx,ky

eiakx c†
kx,ky

c†−kx,−ky +
1
2

∑
−kx,−ky

e−iakx c†−kx,−ky c†
kx,ky

=
1
2

∑
kx,ky

eiakx c†
kx,ky

c†−kx,−ky −
1
2

∑
kx,ky

e−iakx c†
kx,ky

c†−kx,−ky = i
∑
kx,ky

sin(akx)c†kx,ky c†−kx,−ky (19)

In the last derivation we used the fact that the sum is over a symmetric range and the fermionic commutation relations

of creation and annihilation operators. Similarly, we find that

∑
m,n

ψm,nψm+1,n =
∑
kx,ky

e−iakx c−kx,−ky ckx,ky = −i
∑
kx,ky

sin(akx)c−kx,−ky ckx,ky (20)

∑
m,n

ψ†
m,n+1ψ

†
m,n =

∑
kx,ky

eiaky c†
kx,ky

c†−kx,−ky = i
∑
kx,ky

sin(aky)c†kx,ky c†−kx,−ky (21)

∑
m,n

ψm,nψm,n+1 =
∑
kx,ky

e−iaky c−kx,−ky ckx,ky = −i
∑
kx,ky

sin(aky)c−kx,−ky ckx,ky (22)

Finally, we can write the transformed p-wave Hamiltonian as

H =
∑
kx,ky

{
−2t cos(akx)c†kx,ky ckx,ky − 2t cos(aky)c†kx,ky ckx,ky − (µ − 4t)c†

kx,ky
ckx,ky

+
(
i∆ sin(akx)c†kx,ky c†−kx,−ky − i∆∗ sin(akx)c−kx,−ky ckx,ky

)
+(

i∆[i sin(aky)]c†kx,ky c†−kx,−ky + i∆∗[i sin(aky)]c−kx,−ky ckx,ky
)}

(23)
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In terms of Nambu spinors it can be written (up to an additive constant) as

H =
∑
kx,ky

Ψ†k
©­«
−t

(
cos(akx) + cos(aky)

) − (µ2 − 2t) i∆
(
sin(akx) + i sin(aky)

)
−i∆∗

(
sin(akx) − i sin(aky)

)
t
(
cos(akx) + cos(aky)

)
+ (µ2 − 2t)

ª®¬
Ψk (24)

where Ψ†k =
(
c†
kx,ky

c−kx,−ky
)
and Ψk =

©­«
ckx,ky

c†−kx,−ky

ª®¬
are the Nambu spinors. In the continuum limit (k→ 0):

H = 1
2

∑
kx,ky

Ψ†k
©­«

k2

2m − µ 2i∆
(
kx + iky

)
−2i∆∗

(
kx − iky

) − k2

2m + µ

ª®¬
Ψk (25)

where m = 1
2ta2 and a∆ → ∆. We see that the continuum limit has the characteristic px + ipy chiral form for the

pairing potential.

2.2 Including vector potentials - Peierls substitution

We give a simple derivation for the Peierls substitution, which is based on Feynman’s Lectures (Vol. III, Chapter 21).

Our starting point is Hofstadter Hamiltonian:

H0 =
∑
m,n

(
− teiθ

x
m,n |m+1, n〉〈m, n| − teiθ

y
m,n |m, n+1〉〈m, n| − ε0 |m, n〉〈m, n|

)
+ h.c. (26)

The translation operator |m+ 1〉〈m| can be written explicitly using its generator, that is the momentum operator. Under

this representation its easy to expand it up to the second order,

|m+a〉〈m| = exp
(
− pxa
~

)
|m〉〈m| =

(
1 − ipx

~
a − p2

x

2~2 a2 + O(a3)
)
|m〉〈m| (27)

and in a 2D lattice |m+a〉〈m| −→ |m, n+a〉〈m, n|. Next, we expand up to the second order the phase factors,

eiθ = 1 − iθ ′a − 1
2

(
θ ′2 + iθ ′′2

)
a2 = 1 +

ieAx

~
a − e2 A2

x

2~2 a2 +
ieA′x
2~

a2 + O(a3) (28)

where for brevity with denoted: θ = θxm,n, Ax = θ ′ = ∂aθ
x
m,n

��
a=0 and A′x = θ ′′ = ∂2

aθ
x
m,n

��
a=0 with ~ = e = 1.

Substituting these expansions to relevant part of the Hamiltonian yields

eiθ |m + a〉〈m| + e−iθ |m〉〈m + a| =(
1 +

ieAx

~
a − e2 A2

x

2~2 a2 +
ieA′x
2~

a2 + O(a3)
) (

1 − ipx

~
a − p2

x

2~2 a2 + O(a3)
)
|m〉〈m| + h.c =

(
2 − p2

x

~2 a2 +
e{px, Ax}
~2 a2 − e2 A2

x

~2 a2 + O(a3)
)
|m〉〈m|

≈
(
− a2

~2
(
px − eAx

)2
+ 2 + O(a3)

)
|m〉〈m| (29)

161



Generalizing the last result to the 2D case, the we arrive to the Hamiltonian of a 2D electron gas at the continuum limit:

H0 =
1

2m
(
p − eA

)2
+ ε̃0 (30)

where the effective mass is m = ~2/2ta2 and ε̃0 = ε0 + 4.

Moreover, another useful result is

λ
(
e−iθ |m, ↑〉〈m + a, ↓ | − eiθ |m + a, ↑〉〈m, ↓ |

)
≈ 2iaλ
~
|m, ↑〉(px − Ax)〈m, ↓ | + O(a3) (31)

which is relevant when considering the Rashba Hamiltonian, HR = α(σ × p) · ẑ where α = 2aλ/~ is the Rashba

coupling , p is the momentum and σ is the Pauli matrix vector. This is nothing but a two-dimensional version of the

Dirac Hamiltonian (with a 90 degrees rotation of the spins).

2.3 Including vortex defects - exploiting the gauge invariant property

In this section we show how the phase factor of the coupling terms, which comprise all the information about the vortex

defects change as we transform from the continuum limit to a discrete model. Staring from the p-wave continuum

Hamiltonian

H = 1
2

(
ψ†x,t ψx,t

) ©­«
1

2m (−p + A)2 − µ {
∆, px − ipy

}
{
∆, px + ipy

}
− 1

2m (p + A)2 + µ
ª®¬
©­«
ψx,t

ψ†x,t

ª®¬
(32)

with ∆ = ∆0/2 eiφ(x) and φ(x) = ∑
i Arg(x − xi), we apply a gauge transformation U = eiτzφ/2. The gauge transmutes

the phase factor of the order parameter into fictional vector potential, ∇φ(x) and the Hamiltonian takes the following

form

H = 1
2

(
ψ†x,te

iφ(x)/2 ψx,te−iφ(x)/2
) ©­«

1
2m (−p + a)2 − µ ∆0(px − ipy)
∆0(px + ipy) − 1

2m (p + a)2 + µ
ª®¬
©­«
ψx,te−iφ(x)/2

ψ†x,te
iφ(x)/2

ª®¬
(33)

with a = A −∇φ(x)/2. When discretizing the Hamiltonian there is a known prescription to deal with the vector

potential - that is Peiers Substitution. Our last step is to use the U(1) gauge transformation to recover the phase of the

coupling terms. Under the transformation ψx −→ ψxeiφ(x)/2 the translation operator transforms as

ψ†x+δψx exp
[
− 1

2

∫ x+δ

x
dr∇φ(r)

]
= ψ†x+δψx exp

[
1
2

(
φ(x) − φ(x + δ)

)]
→ ψ†x+δψx (34)

while the coupling term transforms as

ψ†x+δψ
†
x → ψ†x+δψ

†
x exp

[
1
2

(
φ(x) + φ(x + δ)

)]
. (35)

Thus, we have found how to incorporate vortex defects into the tight-binding model.
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2.4 Transforming the creation-annihilation operators from the lattice site occupation basis
to the energy occupation basis

The lattice Hamiltonian is

H =
∑
m,n

[
−t

(
ψ†

m+1,nψm,n +ψ
†
m,n+1ψm,n

)
− 1

2
(µ − 4t)ψ†m,nψm,n

+
(
∆m+1,n
m,n ψ†

m+1,nψ
†
m,n + i∆m,n+1

m,n ψ†
m,n+1ψ

†
m,n

)]
+ h.c. (36)

where the coupling constant in the presence of vortex defects is defined in Eq.(35). We rewrite it in the Nambu

space formalism, H = 1
2
∑

m,n

[
Ψ†HΨ − (µ − 4t)] , where the Nambu spinor structure for a 2 × 2 lattice is simply

Ψ = (ψ11, ψ12, ψ21, ψ22, ψ
†
11, ψ

†
12, ψ

†
21, ψ

†
22)T and H is the corresponding Hamiltonian density matrix (also refereed as

the single particle Hamiltonian and BdG (Bogoliubov-de-Gennes) Hamiltonian). This representation illuminates the

particle-hole symmetry (PHS), which takes the form τxH∗τx = −H with τx = τ1 ⊗ I and I is a unity matrix with a

dimension that equals to the lattice size. Consequently, the Nambu spinor can be divided into two vectors,Ψ = (ψ,ψ†)T

and the BdG Hamiltonian can be divided into four matrix blocks,

H = ©­«
ξ ∆

∆† −ξT
ª®¬
. (37)

Next, we diagonalize the single particle Hamiltonian in order to find a transformation of the creation-annihilation

operators from the lattice site occupation basis to the energy occupation basis. A consequence of the PHS is that for

every eigenenergy ε with eigenstate Ψε there exist a opposite eigenenergy, −ε and an eigenstate τxc∗ε -

(a) τxH∗τx = −H

(b) H
(
uε vε

)T
= ε

(
uε vε

)T ⇒ τxH∗τx
©­«
uε

vε

ª®¬
= −H ©­«

uε

vε

ª®¬
⇒ H ©­«

vε

uε

ª®¬
∗

= −ε ©­«
vε

uε

ª®¬
∗

(38)

where uε and vε are both vectors of dimension that equals to the lattice size. Hence, we found a relation between

the eigenstates with opposite eigenvalues, u−ε = v̄ε . Since the BdG Hamiltonian is redundant the number of free

non-interacting fermions is half of the Hamiltonian dimensionality. This can be seen by writing explicitly the basis

transformation of the creation-annihilation operators -

c†ε =
∑
m,n

(
um,n
ε ψ†m,n + v

m,n
ε ψm,n

)
, cε =

∑
m,n

(
ūm,n
ε ψm,n + v̄

m,n
ε ψ†m,n

)
(39)

but, as shown above, the PHS imply that

c†−ε =
∑
m,n

(
v̄m,nε ψ†m,n + ūm,n

ε ψm,n

)
(40)

163



which leads to a relationship between the creation-annihilation operators, i.e. c†ε = c−ε .

Now up to a constant the Hamiltonian after the diagonalization process is

H ∼ 1
2

∑
ε

ε c†εcε =
1
2

∑
ε>0

(
ε c†εcε − ε c†−εc−ε

)
=

1
2

∑
ε>0

(
ε c†εcε − ε cεc†ε

)
=

∑
ε>0

ε

(
c†εcε −

1
2

)
(41)

The missing constant is just the ground state energy, i.e. H =
∑
ε>0 ε

(
c†εcε

)
+ E0. The cause to write the Hamiltonian

using only non-negative eigenvalues is that they are an artefact of the redundant formalism. For completeness of the

discussion, we also give the inverse transformation

ψm,n =
∑
ε

uεm,ncε, ψ†m,n =
∑
ε

vεm,ncε . (42)

2.5 The anti-commutation relations of the excitation operators

{
c†εc†ε ′

}
=

∑
m,n,
m̃,ñ

[
um,n
ε um̃,ñ

ε ′ ψ
†
m,nψ

†
m̃,ñ + v

m,n
ε vm̃,ñε ′ ψm,nψm̃,ñ + um,n

ε vm̃,ñε ′ ψ
†
m,nψm̃,ñ + v

m,n
ε um̃,ñ

ε ′ ψm,nψ
†
m̃,ñ+

um̃,ñ
ε ′ um,n

ε ψ†m̃,ñψ
†
m,n + v

m̃,ñ
ε ′ vm,nε ψm̃,ñψm,n + um̃,ñ

ε ′ vm,nε ψ†m̃,ñψm,n + v
m̃,ñ
ε ′ um,n

ε ψm̃,ñψ
†
m,n+

]
=

∑
m,n
m̃,ñ

[
um,n
ε um̃,ñ

ε ′

{
ψ†m,n,ψ

†
m̃,ñ

}
+ vm,nε vm̃,ñε ′

{
ψm,n,ψm̃,ñ

}
+ um,n

ε vm̃,ñε ′
{
ψ†m,n,ψm̃,ñ

}
+

vm,nε um̃,ñ
ε ′

{
ψm,n,ψ

†
m̃,ñ

}]
=

∑
m,n
m̃,ñ

[
um,n
ε vm̃,ñε ′ δm,nδm̃,ñ + v

m,n
ε um̃,ñ

ε ′ δm,nδm̃,ñ
]
=

∑
m,n

[
um,n
ε vm,nε ′ + v

m,n
ε um,n

ε ′
]
= 〈ϕε |τxK|ϕε ′〉 = 〈ϕε |ϕ−ε ′〉 = 0 (43)

In a similar fashion we’ll get that

{cεcε ′} = 〈ϕε |τxK|ϕε ′〉∗ = 0 (44)
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and also
{
cεc†ε ′

}
=

∑
m,n,
m̃,ñ

[
ūm,n
ε um̃,ñ

ε ′ ψm,nψ
†
m̃,ñ + v̄

m,n
ε vm̃,ñε ′ ψ

†
m,nψm̃,ñ + ūm,n

ε vm̃,ñε ′ ψm,nψm̃,ñ + v̄
m,n
ε um̃,ñ

ε ′ ψ
†
m,nψ

†
m̃,ñ+

um̃,ñ
ε ′ ūm,n

ε ψ†m̃,ñψm,n + v
m̃,ñ
ε ′ v̄m,nε ψm̃,ñψ

†
m,n + um̃,ñ

ε ′ v̄m,nε ψ†m̃,ñψ
†
m,n + v

m̃,ñ
ε ′ ūm,n

ε ψm̃,ñψm,n

]
=

∑
m,n,
m̃,ñ

[
ūm,n
ε um̃,ñ

ε ′

{
ψm,n,ψ

†
m̃,ñ

}
+ v̄m,nε vm̃,ñε ′

{
ψ†m,n,ψm̃,ñ

}
+ ūm,n

ε vm̃,ñε ′
{
ψm,n,ψm̃,ñ

}
+

v̄m,nε um̃,ñ
ε ′

{
ψ†m,n,ψ

†
m̃,ñ

}]
=

∑
m,n
m̃,ñ

[
ūm,n
ε um̃,ñ

ε ′ δm,nδm̃,ñ + v̄
m,n
ε vm̃,ñε ′ δm,nδm̃,ñ

]
=

∑
m,n

[
ūm,n
ε um,n

ε ′ + v̄
m,n
ε ′ vm,nε

]
= 〈ϕε |ϕε ′〉 = δε,ε ′ . (45)

Since we are dealing only with non-negative eigenenergies, the last equality always holds. A special attention should

be taken in the case that both energies are zero , i.e. ε = ε ′. Since there is a degeneracy, one must choose such

eigenstates that obey the PHS, i.e. ϕ0+ = τx ϕ̄0− .

2.6 Derivation of the p-wave superconductor many body ground state

Using the annihilation operator in the energy basis,

cε =
∑
m,n

(
v̄m,nε ψ†m,n + ūm,n

ε ψm,n

)
(46)

we write the unnormalized many-body ground state as

|gs〉 ∝
∏
0≤ε

cε |0〉 =
∏
0≤ε

∑
m,n

(
v̄m,nε ψ†m,n + ūm,n

ε ψm,n

)
|0〉. (47)

which satisfies cε ′ |gs〉 = for any ε ′ > 0.

2.7 The Streda Formula

The expression for the total particle density is

ρ =
δS
δa0
= C1a0 − σxy(∇ × a)z + C0 (48)

where C1, C2 and σxy are constants that depend on the structure of the system, i.e. continuum model, square lattice,

etc. Since a0 is coupled to τ3, the local particle density is given by

ρx,t =
1
2

〈
Ψ†x,tτ3Ψx,t

〉
=

1
2

〈
ψ†x,tψx,t − ψx,tψ

†
x,t

〉
=

〈
ψ†x,tψx,t

〉
− 1

2
(49)
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Using Eq.(48-49) we can write a simple expression of the Hall like conductivity (also known as the Streda formula),

σxy for the lattice model,

σxy =
∂ρ

∂Bz
=

∑
m,n

∂
〈
ψ†m,nψm,n

〉
∂φ

(50)

where the φ is the total flux through the whole lattice and the ground state exception value of the local particle number

is:

〈
ψ†m,nψm,n

〉
=

∑
ε1,ε2

vε1
m,nuε2

m,n

〈
cε1 cε2

〉
=

©­­­«
∑

0+6ε1
0+6ε2

+
∑

0+6ε1
ε260−

+
∑
ε160−
0+6ε2

+
∑
ε160−
ε260−

ª®®®¬
vε1
m,nuε2

m,n

〈
cε1 cε2

〉
= (51)

=
∑

0+6ε1
0+6ε2

(
vε1
m,nuε2

m,n

〈
cε1 cε2

〉
+ vε1

m,nv̄
ε2
m,n

〈
cε1 c†ε2

〉
+ ūε1

m,nuε2
m,n

〈
c†ε1 cε2

〉
+ ūε1

m,nv̄
ε1
m,n

〈
c†ε1 c†ε2

〉)

=



∑

0<ε |vεm,n |2 + |v0+
m,n |2 , for an even ground state∑

0<ε |vεm,n |2 + |u0+
m,n |2 , for an odd ground state

,

where we used the operator transformation appearing in Eq.(42)and the PHS relations appearing in Eq.(38) and Eq.(40).

Also, we note that |v0+
m,n | = |u0+

m,n | whenever ε0+ = ε0−.1

2.8 Supercurrents

We aim to calculate the supercurrents induced in the system as the magnetic field penetrates it [3, 1]. Our starting point

is the continuity equation

∂tρi j + (∇ · j)i j = 0 (52)

where ρi j = eni j and j are the electron density and current operators respectively. On the other side, In the Heisenberg
picture the equation of motion for the particle density operator at site i, j is given by

Ûni j =
i
~

[H, ni j

]
. (53)

Thus, we identify the divergence of the current as

(∇ · ĵ)i j = − ie
~

[H, ni j

]
. (54)

where both the kinetic and pairing terms in the BCS Hamiltonian do not commute with the particle number operator.

The total (sum for all sites) particle number operator is expected to commute with the Hamiltonian in an isolated system,

1 〈gs |ψ†m,nψm,n |gs〉 is the groundstate expectation value of the electrons number. In addition, the occupation number of the Bogoliubov

quasiparticles is 〈gs |cε c†ε |gs〉 = 1 for ε ≥ 0+ and 0 otherwise.
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otherwise source terms must be included in the continuity equation. However, one of the mean-field theory anomalies

is the absent of particle number conservation, so the pairing terms do not commute with the total particle number. This

anomaly leads to a contradiction since the total net-current is expected to be zero in an isolated superconductor. The

problem is overcome by using instead the exact many-body interaction term. For a p-wave superconductor we have

spinless fermions and interaction term takes the form

Hint =
∑
i j

Vi jψ
†
iψ
†
jψjψi . (55)

As shown in the calculation below, [Hint, ni j] = 0, namely the number operator and the exact interaction term commute.

ψiψ
†
k
ψk = (δik −ψ†kψi)ψk = δikψi +ψ

†
k
ψkψi ⇒ [ψi,ψ

†
k
ψk] = ψkδik (56)

( [
ψi,ψ

†
k
ψk

] )†
= ψ†

k
ψkψ

†
i −ψ†iψ†kψk = −

[
ψ†i ,ψ

†
k
ψk

] ⇒ [ψ†i ,ψ†kψk] = −ψ†kδik (57)

ψ†iψ
†
jψjψink = ψ

†
iψ
†
jψjnkψi +ψ

†
k
ψ†jψjψk = ψ

†
iψ
†
j nkψjψi +ψ

†
iψ
†
k
ψkψi +ψ

†
k
ψ†jψjψk =

ψ†i nkψ
†
jψjψi +ψ

†
k
ψ†jψjψk = nkψ

†
iψ
†
jψjψi ⇒ [

ψ†iψ
†
jψjψi, nk

]
= 0 (58)

Hence, only the kinetic part of the BCS Hamiltonian play a a role in the divergence of the current operator,

(∇ · ĵ)i j = − ie
~

[H0, ni j

]
. (59)

The mean-field approximation would take a role only when calculating the exception value of the operator.

Our next step is to calculate the current operator for a p-wave superconductor on a lattice.

ti jψ
†
iψjnk = ti jψ

†
i nkψj + tikψ

†
iψk = ti jnkψ

†
iψj − tk jψ

†
k
ψj + tikψ

†
iψk

⇒ [
ti jψ

†
iψj, nk

]
= tikψ

†
iψk − tk jψ

†
k
ψj (60)

For a square latticeH0, the kinetic part is

H0 =
∑

a,b,c,d

[
rc,d
a,b
ψ†

a,b
ψc,d + uc,d

a,b
ψ†

a,b
ψc,d + ε

a,b
c,d
ψ†

a,b
ψc,d + h.c

]
(61)

where the right (up) hopping amplitude is ra,b
c,d
∝ δa,c−1δb,d (ua,b

c,d
∝ δa,cδb+1,d) and the on-site energy is εa,bc,d

∝ δa,cδb,d .
The commutation relation between theH0 and ni, j is

[H0, ni, j

]
=

∑
a,b

[
ra,bi, j ψ

†
a,b
ψi, j − r i, j

a,b
ψ†i, jψa,b + ua,b

i, j ψ
†
a,b
ψi, j − ui, j

a,b
ψ†i, jψa,b

+ εa,bi, j ψ
†
a,b
ψi, j − ε i, ja,b

ψ†i, jψa,b − h.c
]
. (62)
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where we subtracted the hermitian conjugate (instead of adding as in the Hamiltonian) since

( [
ti jψ

†
iψj, nk

] )†
=

(
ti jψ

†
iψjnk − ti jnkψ

†
iψj

)†
= t̄i jnkψ

†
jψi − t̄i jψ

†
jψink = −

[
t̄i jψ

†
jψi, nk

]
⇒ [(ti jψ†iψj)†, nk

]
= −

( [
ti jψ

†
iψj, nk

] )†
. (63)

Hence, the divergence of the current operator is

(∇ · ĵ)i j = − ie
~

(
ti+1, j
i, j ψ†

i+1, jψi, j − ti, j
i−1, jψ

†
i, jψi−1, j + ti, j+1

i, j ψ†
i, j+1ψi, j − ti, j

i, j−1ψ
†
i, jψi, j−1 − h.c

)
(64)

where ti, j
k,l

is the hopping amplitude[2]. This equation tells us that the divergence of the current at site i, j is equal to the

current going out minus the current going in. Thus, the net current through all the nodes is conserved. We processed

by taking the groundstate exception value of the current operator divergence in the same fashion as in Eq.(51),

〈∇ · ĵ〉i j = − ie
~

∑
0+≤ε

(
ti+1, j
i, j vεi+1, j v̄

ε
i, j − ti, j

i−1, jv
ε
i, j v̄

ε
i−1, j + ti, j+1

i, j vεi, j+1v̄
ε
i, j − ti, j

i, j−1v
ε
i, j v̄

ε
i, j−1

)
+ c.c (65)

Calculating the average of currents going in and out a node would give a good estimation of the current density at the

node.

2.9 Transforming from a p-wave superconductor tight-binding model of a triangular lattice
to the continuum limit

We begin with the p-wave lattice Hamiltonian,

H =
∑
m,n

[
− t

(
ψ†

m+2,nψm,n +ψ
†
m+1,n+1ψm,n +ψ

†
m−1,n+1ψm,n

)
− 1

2
(µ − 6t)ψ†m,nψm,n

+ ∆

(
ψ†

m+2,nψ
†
m,n + eiπ/3ψ†

m+1,n+1ψ
†
m,n + ei2π/3ψ†

m−1,n+1ψ
†
m,n

)
+ h.c (66)

The sum
∑

m,n corresponds to the
∑qx−1

k=0
∑qy−1

l=0 with the coordinates (m, n) related to (k, l) by m = 2k +mod(n, 2) and
n = l.

Our next step is to transform the Hamiltonian into momentum space. The creation and annihilation operators can be

represented as a discrete Fourier transform

ψm,n =
1√
N

∑
kx,ky

eikxma/2+ikyn
√

3a/2ckx,ky , (67)

where for a lattice with qx × qy atomic sites N = qx × qy . In addition, due to the periodic boundary conditions

kiqiai = 2πpi , pi ∈ Z and i = x, y.
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Figure 1: Triangular lattice with periodic
boundary conditions. The indices that appear
below the nodes correspond to the tight-binding

Hamiltonian indices, (m, n). The lattice sites are
positioned at (ma/2,

√
3na/2)where a is the lat-

tice constant.

The translation operators transform as

∑
m,n

ψ†
m+2,nψm,n + h.c. = 2

∑
kx,ky

cos(kxa)c†
kx,ky

ckx,ky

∑
m,n

ψ†
m+1,n+1ψm,n + h.c. = 2

∑
kx,ky

cos

(
kxa
2
+

√
3kya
2

)
c†
kx,ky

ckx,ky (68)

∑
m,n

ψ†
m−1,n+1ψm,n + h.c. = 2

∑
kx,ky

cos

(
− kxa

2
+

√
3kya
2

)
c†
kx,ky

ckx,ky

The occupation number operator transforms as

∑
m,n

ψ†m,nψm,n =
∑
kx,ky

c†
kx,ky

ckx,ky (69)

so the kinetic part of the Hamiltonian is

−2t

(
cos(kxa) + cos

( kxa
2
+

√
3kya
2

)
+ cos

(
− kxa

2
+

√
3kya
2

))
− (µ − 6t) ≈

t

(
(kxa)2 +

( kxa
2
+

√
3kya
2

)2
+

(
− kxa

2
+

√
3kya
2

)2
)
− µ = (70)

3t
2

(
(kxa)2 + (kya)2

)
− µ.
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The coupling terms transform as

∑
m,n

ψ†
m+2,nψ

†
m,n = i

∑
kx,ky

sin(kxa)c†
kx,ky

c†−kx,−ky

∑
m,n

ψ†
m+1,n+1ψ

†
m,n = i

∑
kx,ky

sin
(

kxa
2
+

√
3ky
2

)
c†
kx,ky

c†−kx,−ky (71)

∑
m,n

ψ†
m+1,n−1ψ

†
m,n = i

∑
kx,ky

sin
(
− kxa

2
+

√
3ky
2

)
c†
kx,ky

c†−kx,−ky

so the in interaction part of the Hamiltonian is

i∆

(
sin(kxa) + eiπ/3 sin

( kxa
2
+

√
3ky
2

)
+ ei2π/3 sin

(
− kxa

2
+

√
3ky
2

))
≈

i∆

(
kxa +

(1
2
+ i

√
3

2

) ( kxa
2
+

√
3kya
2

)
+

(
− 1

2
+ i

√
3

2

) (
− kxa

2
+

√
3kya
2

))
=

i∆
3a
2
(kx + iky) (72)

The complete Hamiltonian density can be written as

H =

[
− t

(
cos(kxa) + cos

( kxa
2
+

√
3kya
2

)
+ cos

(
− kxa

2
+

√
3kya
2

))
− 1

2
(µ − 6t)

]
τz

− ∆
2

[
2 sin(kxa) + sin

(
kxa
2
+

√
3kya
2

)
− sin

(
− kxa

2
+

√
3kya
2

)]
τy

−
√

3∆
2

[
sin

(
kxa
2
+

√
3kya
2

)
+ sin

(
− kxa

2
+

√
3kya
2

)]
τx (73)

and the Hamiltonian is justH = Ψ†kHΨk with the Nambu spinors Ψ†k =
(
c†
kx,ky

c−kx,−ky
)
and Ψk =

©­«
ckx,ky

c†−kx,−ky

ª®¬
.

In the continuum limit the Hamiltonian takes the standard form -

H = 1
2

∑
kx,ky

Ψ†k
©­«

k2

2m − µ ∆
(
kx + iky

)
∆∗

(
kx − iky

) − k2

2m + µ

ª®¬
Ψk (74)

where the effective mass is m = 1
3ta2 and i3a∆→ ∆.

2.10 Fermion parity switches

To understand the existence of crossing between two energy levels at zero energy appear, recall that to obtain a

Bogoliubov-de Gennes description of the superconductor we had to double the number of degrees of freedom by
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introducing holes. Hence, a pair of ±E energy levels does not corresponds to two distinct quantum states, but to a

single quantum state: c†ε = c−ε . Since |gs〉 ∝ ∏
0≤ε cε |0〉, populating the partner state at energy E is the same as

emptying the positive energy state. In other words, at each crossing the fermion parity in the ground state of the

superconductor changes from even to odd, or vice versa. Hence these crossings are fermion parity switches.

Since the ground state fermion parity is preserved by the superconducting Hamiltonian if there are no Bogoliubov

quasiparticles crossing zero energy, the ground state fermion parity is the topological invariant of this system. We now

turn to introduce the new invariant:

Q = sign
[
pf(H(τx ⊗ Iq))

]
, (75)

where τx is the first Pauli matrix, I is the identity matrix of dimension q (the dimension of the Hamiltonian is 2q).

2.11 Calculating the angular momentum of the cooper pairs

The kinetic part of the single particle Hamiltonian (in first quantization):

H0 =
∑
i, j

ti, j |i〉〈 j | − µ
∑
i, j

|i〉〈i |. (76)

The position operator:

r =
∑
i

ri |i〉〈i |. (77)

The velocity operator:

v =
∑
i, j

vi, j |i〉〈 j |, vi, j = 〈i |v| j〉 = 1
i~
〈i | [r,H0] | j〉 = − i

~
(ri − rj)(H0)i j . (78)

The eigenstates of the Hamiltonian are

|ψε 〉 =
∑
i

ψi,ε |i〉, ψi,ε = 〈i |ψε 〉. (79)

The angular momentum is

〈Lz〉 = 〈ψε |r × v|ψε 〉 =
∑
i, j

ψ∗ε,iψε, j 〈i |r × v| j〉 =
∑
i, j

ψ∗ε,iψε, j
(
ri × vi, j

)

= − i
~

∑
i, j

ψ∗ε, iψε, j
[
xi(yi − yj)Hi, j − yi(xi − xj)Hi, j

]

=
i
~

∑
i, j

ψ∗ε, iψε, jHi, j

(
xiyj − yi xj

)
,

(80)
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where for brevity we wrote H instead of H0. In the case that the angular momentum is calculated with respect to

rc = (xc, yc) we have:

〈Lz〉 = 〈ψε |(r − rc) × v|ψε 〉 =
∑
i, j

ψ∗ε,iψε, j 〈i |(r − rc) × v| j〉 =
∑
i, j

ψ∗ε,iψε, j
((ri − rc) × vi, j

)

= − i
~

∑
i, j

ψ∗ε, iψε, j
[(xi − xc)(yi − yj)Hi, j − (yi − yc)(xi − xj)Hi, j

]

=
i
~

∑
i, j

ψ∗ε, iψε, jHi, j

(
xiyj − yi xj − xc(yi − yj) + yc(xi − xj)

)
.

(81)

3 Lattice gauge fields

In the presence of an external magnetic field the translation operators, which form the kinetic part of the Hamiltonian,

are simply

Tx = ψ
†
m+1,nψm,neiθ

x
m,n Ty = ψ

†
m,n+1ψm,neiθ

y
m,n . (82)

The phase factors are defined as

θxm,n =
e
~

∫ m+1

m

Ax(x, n) dx θ
y
m,n =

e
~

∫ n+1

n

Ay(m, y) dy (83)

3.1 Calculating the the flux per plaquette

The number of flux quanta per plaquette φmn is related to the lattice curl of the phase factor:

rotθm,n = ∆xθym,n − ∆yθxm,n =
(
θ
y
m+1,n − θ

y
m,n − θxm,n+1 + θ

x
m,n

)
=

=
e
~

∫
unit
cell

A · dl = 2π
e
h

∫
B · ds = 2πφm,n

(84)

where the phase factors are defined as θxmn =
e
~

∫ m+1
m

A · dx and θymn =
e
~

∫ n+1
n

A · dy. Also, it is related to the

accumulated phase of a single particle state, |ψ〉 = ψi, j |0〉 surrounding a plaquette:

T†yT†xTyTx |ψ〉 = T†yT†xTy |i + 1, j〉eiθxi, j = T†yT†x |i + 1, j + 1〉ei
(
θxi, j+θ

y
i+1, j

)
=

T†y |i, j + 1〉ei
(
θxi, j+θ

y
i+1, j−θxi, j+1

)
= |i, j〉ei

(
θxi, j+θ

y
i+1, j−θxi, j+1−θ

y
i, j

)
= |i, j〉ei2πφm,n

(85)

3.2 The Landau gauge

Under this gauge, which is designed for a cylindrical lattice of width q, the vector potential is

Ax(x, y) = 0, Ay(x, y) = pΦ0x
qa

. (86)
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where p is the flux strength, q is the dimension of the lattice and Φ0 = 2π is a flux quanta in natural units. The number

of flux per plaquette, φm,n is given by

φm,n = (m + 1) p
q
− m

p
q
=

p
q
. (87)

The flux through a q × q lattice is 2πqp with p ∈ Z.

3.3 The almost antisymmetric gauge

Under this gauge, which is designed for a toroidal lattice of size q × q+1, the vector potential is

Ax(x, y) = pΦ0y

(q + 1)a , Ay(x, y) = pΦ0x
qa

. (88)

where p is the flux strength and Φ0 = 2π is a flux quanta in natural units. Under this gauge ∂y Ax is slightly greater

than ∂x Ay and their contributions to the magnetic field are counter-oriented. The number of flux per plaquette, φm,n is

given by

φm,n = (m + 1) p
q
− m

p
q
− (n + 1) p

q + 1
+ n

p
q + 1

=
p
q
− p

q + 1
=

p
q(q + 1) . (89)

The flux through the entire lattice is 2πp with p ∈ Z.

3.4 The construction of the Landau Gauge and the Almost Antisymmetric Gauge

In order to have an integer number of flux quanta flowing homogeneously through the entire lattice, we must have a

constant rational number of flux quanta per plaquette. These requirements determines the form of the phase factors -

rot(θi, j) = 2πφi, j = 2π
p
s
= ∆xθ

y
i, j − ∆yθxi, j =⇒ θxi, j = 2π

p′

s′
y, θ

y
i, j = 2π

p′′

s′′
x (90)

with s = s′ × s′′ being a divisor of the lattice size and p = p′′ × s′ − s′′ × p′.

If we add a requirement for periodic boundary conditions over a rectangular lattice with qx × qy dimensions than

θxi,qy = θ
x
i,0 − 2πn =⇒ n =

p′

s′
qy, θ

y
qx, j
= θ

y
0, j − 2πm =⇒ m =

p′′

s′′
qx {m, n} ∈ Z (91)

so s′ equals to qy or one of its divisors. The minimal flux per plaquette allowed by the gauge is determined by s. As the

values of s′ and s′′ are larger the minimal value of the flux per plaquette is smaller. Thus, we choose s′ = qy (which

forces n = p′), likewise s′′ = qx . By setting p′ = 0 and qx = qy , the Landau gauge is obtained. Also, setting p′ = p′′

and qy = qx + 1 would yield the almost anti-symmetric gauge. In both of the gauges there is a single parameter, p′′

that controls the flux strength.
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3.5 The Singular Gauge

In order to add "point flux" of a half flux quanta we can use the vector potential

A(r − r0) = Φ0
4π

∇Arg(r − r0) (92)

where r0 denotes the "point flux" position on the lattice.

3.6 Magnetic unit cells and the degeneracy in the energy levels of Hofstadter Hamiltonian

The Hofstadter Hamiltonian describes a tight binding model for spinless electrons on a square lattice, in the presence

of an external magnetic field. It can simplify be written as

H = Tx + Ty + h.c , (93)

where Tx and Ty are the translation operators. Calculating the commutation relation of the translation operators, when

we act on a single-particle state (m, n), |ψmn〉 = ψ†m,n |0〉 yields

TxTy |ψi, j〉 =
∑
m,n

Txψ
†
m,n+1ψm,neiθ

y
m,nψ†i, j |0〉

=
∑
m,n

ψ†
m+1,nψm,nψ

†
i, j+1 |0〉e

iθ
y
i, j eiθm,n = ψ†

i+1, j+1 |0〉e
i
(
θ
y
i, j θ

x
i, j+1

)

TyTx |ψi, j〉 =
∑
m,n

Tyψ
†
m+1,nψm,neiθ

x
m,nψ†i, j |0〉 =

∑
m,n

ψ†
m,n+1ψm,nψ

†
i+1, j |0〉e

θxi, j eθ
y
m,n = ψ†

i+1, j+1 |0〉e
(
θxi, j+θ

y
i+1, j

)

⇒ TxTy = TyTxe
(
θ
y
i j+θ

x
i, j+1−θxi, j−θ

y
i+1, j

)
= TyTxei

(
∆xθ

y
i, j−∆yθxi, j

)
= TyTxei2πφi, j

(94)

The translation operators don’t commute with each other and nor with the Hamiltonian. However, we can define

magnetic translation operators that do commute with the Hamiltonian as follows:

T̃x = ψ
†
m+1,nψm,neiχ

x
m,n T̃y = ψ

†
m,n+1ψm,neiχ

y
m,n . (95)

In order to determine the phase χx
m,n we demand that a) the magnetic translation operator obey the commutation

relation
[
Tx, T̃x

]
= 0 and b)

[
Ty, T̃x

]
= 0. Starting from the first requirement:

TxT̃x |ψi, j〉 = Tx

∑
m,n

ψ†
m+1,nψm,nψ

†
i, j |0〉eiχ

x
m,n =

∑
m,n

ψ†
m+1,nψm,nψ

†
i+1, j |0〉e

i
(
χx
i, j+θ

x
m,n

)

= ψ†
i+2, j |0〉e

i
(
χx
i, j+θ

x
i+1, j

)

T̃xTx |ψi, j〉 = ψ†i+2, j |0〉e
i
(
θxi, j+χ

x
i+1, j

)

⇒ [
Tx, T̃x

]
= ψ†

m+2,nψm,nei
(
θx
m+1,n+χ

x
m,n

) (
1 − ei

(
χx
m+1,n+θ

x
m,n−θxm+1,n−χx

m,n

) )
(96)
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Thus, we deduce that the constrain which maintains the commutativity of Tx and T̃x is

∆x χ
x
i, j = ∆xθ

x
i, j (97)

Continuing with the second requirement:

TxT̃y |ψi j〉 = Tx

∑
m,n

ψ†
m,n+1ψm,nψ

†
i, j |0〉eiχ

y
m,n =

∑
m,n

ψ†
m+1,nψm,nψ

†
i, j+1 |0〉e

i
(
θxm,n+χ

y
i, j

)

= ψ†
i+1, j+1 |0〉e

i
(
θx
i, j+1+χ

y
i, j

)

T̃yTx |ψi j〉 = T̃y

∑
m,n

ψ†
m+1,nψm,nψ

†
i, j |0〉eiθ

x
m,n =

∑
m,n

ψ†
m,n+1ψm,nψ

†
i+1, j |0〉e

i
(
χ
y
m,n+θ

x
i, j

)

= ψ†
i+1, j+1 |0〉e

i
(
θxi, j+χ

y
i+1, j

)

⇒ [Tx, T̃y] = ψ†m+1,n+1ψm,n

(
1 − ei

(
θxm,n+χ

y
m+1,n−θxm,n+1−χ

y
m,n

) )
ei

(
θx
m,n+1+χ

y
m,n

)

(98)

From here we deduce that the second constrain which assures the commutativity of Ty and T̃x is

∆x χ
y
i, j = ∆yθ

x
i, j (99)

Using the relation 2πφi j = ∆xθyi j − ∆yθxi j , the two conditions can be represented as

∆x χ
x
i, j = ∆xθ

x
i, j, ∆yθ

x
i, j + 2πφi, j . (100)

In the case of constant flux per plaquette the solution is

χx
i, j = θ

x
i, j + 2π jφi, j (101)

Similarly, [
Tx, T̃x

]
= 0 =⇒ ∆x χx

i, j = ∆xθ
x
i, j,

[
Ty, T̃x

]
= 0 =⇒ ∆x χyi, j = ∆yθxi, j (102)

and the solution of the conditions for χyi, j is

χ
y
i, j = θ

y
i, j − 2πiφi, j (103)

Also, the condition for the magnetic translation operators T̃x and T̃y to commute, likewise eq.(94), is

∆x χ
y
i, j − ∆y χx

i, j = ∆xθ
y
i, j − ∆yθxi, j = 2πφi, j = 2πp. (104)

with p ∈ Z. Thus, except for the case that φi, j is an integer they do not commute. This exception is not a great help

since it means that the flux through the whole lattice is a flux quanta multiplied by its size. On the other hand, if we

require the flux number per plaquette to be rational,

φi, j =
p
s
, {p, s} ∈ Z (105)
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than [
T̃ sx
x , T̃ sy

y

]
= 0, where sx × sy = s (106)

If the momentum states, |k〉 are also eigenstates of the magnetic translation operators, T̃ sx
x and T̃ sy

y than they define a

magnetic cell, in which the Hamiltonian is periodic.

Under the Landau gauge, for a square lattice (q × q) the phases of the magnetic translation operators are

χx = θ
x
i j + 2π jφ = 2π j

p
q
, χy = θ

y
i j − 2πiφ = 2πi

(
p
q
− p

q

)
= 0 (107)

Thus, the magnetic translation operators satisfy

T̃q
x |k〉 = eikxq |k〉, T̃y |k〉 = eiky |k〉. (108)

The first is obtained by noticing that for a single particle - T̃q
x |ψ〉 = ψ†m+q,nψm,n |ψ〉with |ψ〉 = ψ†m,n |0〉 and representing

the operator in momentum space. The second is a straight forward representation in k space. These operators, as

shown above, also commute, [
T̃q
x , T̃y

]
= 0. (109)

The Bloch conditions, [H, T̃x] = 0 and [H, T̃y] = 0 imply that H |k〉 = E(k)|k〉. From here we can prove that the

Landau-level problem on a lattice has a q-fold degeneracy at different wavevectors -

T̃yT̃x |kx, ky〉 = e−i2πφT̃xT̃y |kx, ky〉 = ei(ky−2πφ)T̃x |kx, ky〉 ⇒ T̃x |kx, ky〉 = |kx, ky − 2πφ〉 (110)

The eigenstates |kx, ky − 2πφ〉 and |kx, ky〉 have identical energy, since T̃x commutes with the Hamiltonian. Because

the flux number, φ = p
q is rational, the spectrum is q-fold degenerate, corresponding to the application of T̃x q times.

4 The geometric phases of the p-wave superconductor ground state as two

vortices are exchanged

In this section we derive a formula for the Berry phase of a spinless chiral p-wave superconductor ground state due to

the simultaneous exchange of two vortex defects. This formula is suited for the case that the underling structure of the

p-wave superconductor is a two-dimensional tight-binding square lattice with Dirichlet boundary conditions.

4.1 Derivation of the Gauge-Independent Berry Phase formula

We introduce an instantaneous orthonormal eigenstates |n(R)〉 of the HamiltonianH(R) at each point R:

H(R)|n(R)〉 = En(R)|n(R)〉 (111)
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The time evolution of the system is given by

H(R(t))|ψ(t)〉 = i~∂t |ψ(t)〉, where |ψ(t)〉 = eiθ(t) |n(R(t))〉. (112)

Substituting the time dependent wave function yields the differential equation

En(R(t))|n(R(t))〉 = −~∂tθ(t)|n(R(t))〉 + i~∂t |n(R(t))〉 (113)

which has a solution

θ(t) = i
∫ t f

ti

dt〈n(R(t))|∂t |n(R(t))〉︸                               ︷︷                               ︸
geometric phase

− 1
~

∫ t f

ti

dt En(R(t))︸                 ︷︷                 ︸
dynamical phase

. (114)

We are interested only in the geometric phase, known also as the Berry phase. The integration over t can be regarded

as some parametrization of R so we rewrite it as a contour integral,

γn = i
∫ t f

ti

dt 〈n(R(t ′))|∇R |n(R(t ′)〉 ÛR = i
∮
C

dR〈n(R)|∇R |n(R)〉. (115)

Furthermorewe canwrite theBerry phase as γn =
∮
C dR·An(R) , whereAn(R) = i〈n(R)|∇R |n(R)〉 = −=〈n(R)|∇R |n(R)〉

is defined as the Berry vector potential. The last equality is based on the fact that

〈n(R)|n(R)〉 = 1 ⇒ 〈n(R)|∇R |n(R)〉︸               ︷︷               ︸
η

+ 〈n(R)|∇R |n(R)〉∗︸                ︷︷                ︸
η∗

= 0

⇒ 2<(η) + i(=(η) − =(η)) = 0 ⇒ <(η) = 0

⇒ <(〈n(R)|∇R |n(R)〉) = 0

The time independent wave function, |n(R)〉 is defined uniquely up to a global phase which can be gauged. Under the

gauge transformation |n(R)〉 → eiζ (R) |n(R)〉 , where ζ(R) must maintain the smoothness and the single-valueness of

the wave function.2 Consequentially, the Berry vector potential An(R) is transformed as An(R) → An(R) −∇Rζ(R).
The Berry phase will defer by ∆γn = −

∮
C dR∇Rζ(R) = ζ(R(ti)) − ζ(R(t f )) = 2πm with m being an integer. The last

equality is a result of R(ti) and R(t f ) referring to the same point in the parameter space while ζ(R) is allowed to be

multivalued as long as the wave function is kept single-valued.

In order to describe the simultaneous exchange of two vortices, we need no more than a three-dimensional parameter

space. For a 3D closed path C, the Berry phase is a gauge-invariant quantity as can easily seen by applying the Stokes

2TheU(1) transformation changes the Hamiltonian as (

H ′︷    ︸︸    ︷
U−1HU)(

|n′〉︷   ︸︸   ︷
U−1 |n〉) = E(

|n〉′︷   ︸︸   ︷
U−1 |n〉) withU = e−iζ (R).
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theorem:
γn = −=

∬
S

dS · (∇R × 〈n(R)|∇R |n(R)〉) = −=
∬
S

dSiεi jk∂j (〈n(R)|∇R |n(R)〉)k︸                   ︷︷                   ︸
〈n |∂k |n〉

= −=
∬
S

dS · 〈∇Rn| × |∇Rn〉
(116)

The last equality lies on the fact that the eigenstates are single-valued and smooth functions of the parameter space, R,

so

εi jk∂j (〈n(R)|∂k |n(R)〉) = εi jk 〈∂jn(R)|∂kn(R)〉 + εi jk 〈n(R)|∂j∂kn(R)〉 = εi jk 〈∂jn(R)|∂kn(R)〉. (117)

In a numerical diagonalization of the Hamiltonian to obtain the eigenstates at each R, the diagonalization procedure

will output states with wildly different phase factors, thereby preventing the taking of derivatives. We must gauge-

smoothen first, but this is a nontrivial procedure. However, we overcome this difficulty by rewriting the formula using

only projectors and gradients of them, which are essentially gauge independent. We start with inserting a complete set

of eigenstates
∑

m |m〉〈m| = 1 between the two states gradient,

εi jk 〈∂jn|∂kn〉 = εi jk 〈∂jn|n〉︸  ︷︷  ︸
Imaginary

〈n|∂kn〉︸  ︷︷  ︸
Imaginary

+
∑
m,n

εi jk 〈∂jn|m〉〈m|∂kn)〉 (118)

The first term term is real, giving no contribution to the imaginary part that is used to compute the Berry phase. Hence,

we have

γ = =
∬

S

dSi
∑
m,n

εi jk 〈∂jn|m〉〈m|∂kn〉. (119)

Our next step is to move the derivatives from the eigenstates to the Hamiltonian, that can always be represented using

projectors and as so is gauge independent. Noticing that

En〈m|∇Rn〉 = 〈m|∇R(H |n〉) = 〈m|(∇RH)|n〉 + 〈m|H |∇Rn〉 (120)

we can write the identity

〈m|∇Rn〉 = 〈m|∇RH|n〉
En − Em

(121)

and a similarly

〈∇Rn|m〉 = 〈m|∇Rn〉∗ = 〈n|∇RH|m〉
En − Em

. (122)

Finally the single particle gauge independent Berry phase formula is

γn = −=
∬
S

dS ·
∑
m,n

〈n|∇RH|m〉 × 〈m|∇RH|n〉
(En − Em)2

(123)
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היסוד מצבי במרחב המקודד קוונטי במידע מניפולציות וביצוע איכסון לקראת ראשון צעד

את לאפיין הוא אבריקוסוב מסוג במערבולות המאוכלסות מיורנות ידי על נפרש אשר

מבנה (א) הכולל: כלים מערך מציגים אנו זו מטרה לקרראת שלהן. האלקטרוניות התכונות

מערבולות של מרחבית קונפיגורציה כל לקודד המסוגל מרוכב סדר פרמטר של לפאזה כללי

הכמעט ״הכיול מכנים אנו אשר הפוטנציאל וקטור של כיול (ב) צילנדר. או טורוס גביי על

במערכת הומוגני מגנטי שדה של ביותר הגבוהה לרזולוציה להגיע המאפשר אנטי־סימטרי״,

לפתור כדי בלוך משפט עם יחד הכלים במערך משתמשים אנו מחזוריים. שפה תנאי עם

מסוג מימדי דו כיראלי, במוליך־על אינסופי מערבולות סריג המתאר צמוד־קשר המילטוניאן

הול מוליכות על חזקה השפעה יוצרת קשורים מצבים נוכחות כי מוצאים אנו .p + ip

הול. למוליכות שפרופורציונלית קר זווית ע״י המכומת קר, אפקט על גם מכך וכתוצאה

שדות תורת מעגלית, ג׳וזפסון צומת כיראליים, מולכי־על טופולוגיים, מולכי־על מפתח: מילות

טופולוגי. ספין אבלית, פאזה אבריקוסוב, מערבולות צ׳רן־סיימונס, איבר אפיקטיבית,



תקציר

בנוזלי־ מערבולות נדרשות. למימושם חדשות שיטות קוונטים, במחשבים העניין התגברות עם

אפס באנרגיה ממוקמות מיורנות ידי על מאוכלסות ודו־מימדיים ספין חסרי כיראליים, על

מאפשרת זו תכונה אבלית. לא החלפות סטטיסטיקת להן שמעניקות מיורנות) ־ בפשטות (או

יכולה הפיזיקלית המערכת ולכן היסוד מצבי מרחב בתוך אוניטריות טרנספורמציות ביצוע

במערבולות הטמון מהפוטנציאל מונעים לשגיאות. העמידים קוונטים מחשבים לבניית לשמש

מערבולות עבור נמוכות לאנרגיות אפיקטיבית תאוריה פיתחנו טופולוגי, קוונטי מידע לעיבוד

את שמשמרת חד־ערכית כיול בטרנספורמצית השתמשנו בפיתוח .p + ip מסוג בנוזלי־על

המערבולות, דינמיקת של הפיסיקה את כוללת התאוריה בפעולה. החלקיק־חור סימטרית

מכילה התאוריה כן, כמו בנוזלי־העל. האלקטרונית לצפיפות שפרופורציונלי מגנוס כח כגון

,exp(iπ/8) אוניברסלית, אבלית פאזה מנבא הראשון וחלקי. שלם ־ סיימונס צ׳רן אברי שני

שממוסכים לא־אוניברסלים תיקונים יש זו לפאזה זאת, עם מערבולות. זוג החלפת בעת

החלקי. הצ׳רן־סיימונס לאיבר ומיוחסים טעונים בנוזלי־על

אחת בפועל. להתבצע יכולה מיורנות החלפת בהם מערכות של שונים סוגים מספר יש

לשלוט ניתן ניסויית ומבחינה מאחר טופולוגית ג׳וזפסון צומת היא הרלוונטיות מהמערכות

טופולוגית ג׳וזפסון בצומת ג׳וזפסון מערבולות כי בעבר הוכח בפשטות. המערבולות בתנועת

לזו הזהה החלפות סטטיסטיקת להן שיש מראים אנו זו ובתיזה מיורנות מאכלסות אכן

התנועה את שמתאר המילטוניאן הצעת ידי על נעשה הדבר החומר. בתוך המערבולות של

מוליכי־על משני העשויה מעגלית ג׳וזפסון בצומת הכלוא סוליטון פאזת של הקולקטיבית

אנו ומתוכן הכלוא, הסוליטון של הקוונטית התנועה משוואות את פיתחנו טופולוגיים.

ניתן כי ומראים הצומת את מקיף הוא כאשר שנצברת הגאומטרית הפאזה את מחשבים

הצומת. על מהמתח אותה להסיק
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