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Abstract

Toward the realization of a universal topological quantum computation (TQC) new methods
have been developed to explore chiral superconductors in their topological phase, or topological
superconductors. Vortex defects in 2D spinless chiral p-wave superfluid bind Majorana zero modes
(MZMs) that endow these defects with non-Abelian exchange statistics. This property could be
used to perform unitary transformations in the ground state manifold of the superconductor, which
may then find applications in fault-tolerant quantum computation. Motivated by this potential, we
developed an effective, low-energy theory for vortices in two-dimensional p-wave superfluids. In
our derivation we used a single-valued gauge transformation that manifestly preserved the particle-
hole symmetry of the action. Our theory reproduces the known physics of vortex dynamics such
as the Magnus force proportional to the superconductor density. Moreover, the theory incorporates
both complete and partial Chern-Simons terms. The former predicts a universal Abelian phase,
exp(inr/8), associated with the exchange of two vortices. However, the phase has non-universal

corrections attributed to the partial Chern-Simon term that are screened in charged superfluids.

Several types of systems exist in which the exchange of MZMs may be practically implemented.
Arguably, the most relevant system is the topological Josephson junction as it is a relatively
straightforward matter to experimentally control the motion of Josephson vortices. It has been
previously suggested that Josephson vortices in topological Josephson junctions (TJJ) constitute
such MZMs and retain the exchange statistics of bulk vortices. In this thesis we propose an
effective Hamiltonian describing the collective motion of a phase soliton within a Josephson
junction separating two topological superconductors. Then we derive the equations of motion for
the soliton trapped in an annular Josephson junction and calculate the universal phase accumulated
as it encircles the junction. We find that the universal phase depends on the parity of the number of
vortices enclosed by the junction, then demonstrate that the presence of this phase can be measured

through its effect on the junction’s voltage characteristics.



A necessary step toward the long-term goal of storing and manipulating quantum information
in a Hilbert space spanned by MZMs bound to vortex cores is to understand and characterize
the vortices’ electronic properties. With this objective in mind, we present a framework that
incorporates (a) a general construction for the phase of a complex order parameter capable of
encoding any configuration of vortex defects residing on a flat torus or cylinder and (b) a gauge
for the vector potential, dubbed “the almost anti-symmetric gauge," that allows, in a system with
periodic boundary conditions, access to the highest resolution for its magnetic field dependence. We
use this framework together with Bloch’s theorem to solve a tight-binding Bogoliubov-de Gennes
Hamiltonian for an infinite two-dimensional vortex lattice in a chiral p-wave superconductor. This,
in turn, allows us to access the dispersion of quasi-particle states and study the formation of
Caroli-de Gennes-Matricon states and sub-gap bands induced by tunneling between vortices. In
addition, we generalize the Streda formula to account for the charge response, ¢, of a chiral p-wave
superconductor. We show that c,, is a sum of two contributions, one which is non-universal and

the other equals «/87w, where « is the Chern number of the superconductor.

Keywords: Topological superconductors, Topological superfluids, Annular Josephson junc-
tion, Effective low energy theory, Chern-Simons term, Vortex defects, Abelian exchange phase,

Topological spin
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Chapter 1

Introduction

1.1 Overview

Chiral superconductors constitute a class of unconventional superconductors in which Cooper
pairs spontaneously develop an angular momentum. They superconductors attract attention in part
because, in their topological phase, they may host Majorana zero modes (MZMs). These MZMs
exhibit a number of intriguing physical properties that can be exploited to encode and manipulate
quantum information in such a way that is robust to decoherence[1]. Another of their unique
properties is the existence of surface currents, carried both by edge modes and by bulk states near
the surface[2]. Although the edge currents are not quantized, the edge states can give rise to a
quantized thermal Hall conductance[3, 4, 5]. Another striking phenomena that can occur in triplet
chiral superconductors is the nucleation of half-quantum vortices that carry half the superconducting
magnetic flux quantum[4, 6].

The purpose of this research is to explore the fundamental properties of vortices in topological
superconductors, calculate geometric phases that accompany a adiabatic exchange of vortices,
suggest experiments by which to measure these phases, and formulate using Pfaffian algebra the

Berry theorem for paired states.



The distinctive features of chiral superconductivity may be found in the p-wave superconductor
in a spinless one-band setting. Therefore we begin by deriving an effective action of this model
that accounts for vortices, the same vortices that have recently attracted considerable interest for
their trapping of MZMs. It is only when superconducting vortices bind MZMs that, by virtue
of the properties of the superconductor, the composite object of the vortex and MZM satisfies
non-Abelian exchange statistics and can be employed as building blocks for TQC. The field theory
we found for this chiral p-wave superconductor incorporates a partial Chern-Simons (CS) term, as
well as a complete CS term. Remarkably, the coefficient of the complete CS term is proportional
to the Chern number. While we did discover that the field associated with the complete CS term
is related to the nucleation of vortices, the physical meaning of its corresponding particle density
remains a puzzle.

Quantum computation based solely on MZMs is not universal unless it is supplemented by a
n/8-phase gate. Using the Abelian universal exchange phase for vortices, it has been argued that
such a gate can be generated[7, 8]. To this end, achieving this goal, we focused our attention on
phase solitons in annular topological Josephson junctions[9], deriving the action governing their
dynamics and extracting from the equations of motion of the action a universal quantum exchange
phase for the solitons. The phase manifests itself as a specific spectral feature, therefore carries
experimental significance. Moreover, we showed that one can induce a persistent motion of these
solitons, in turn resulting in a measurable voltage signal, by trapping them in an annular Josephson
junction and adding a vortex within the loop. This spectral feature is in sharp contrast to that of
solitons in non-topological annular Josephson junctions, which are not affected by the presence of
bulk vortices in the inner superconductor.

Finally, we investigated the structure and electronic properties of the vortex-bound states in a
spinless p-wave superconductor by using the tight-binding model. We used the Streda formula
to calculate the anomalous charge response, c,,, at the bulk, and verified that it agrees with our
field theory predictions. Surprisingly, we found that the contribution to c,, from the vortices is

quantized. We attribute this contribution to the formation of bound states as well as deduce from

2



it the quantum phase of the physical system. This effect is unexpected apriorily since, according to
the field theory, the electromagnetic vector field is decoupled from the vortices. Our investigation
reveals that details of the vortex cores are required in order to account for this effect, details that

are absent in the field theoretical formulation, in which vortices are treated as point-like objects.



1.2 Scientific Background

The TQC scheme relies on adiabatic braiding of non-Abelian anyons to generate quantum computa-
tion. Among non-Abelian anyon models, Majorana fermions are arguably the closest to realization.
The 2D , spinless chiral p-wave superconductor is the simplest model that can be used to describe
a topological superconductor. Vortices in this type of superconductor are expected to host zero-
energy, localized Majorana fermions and therefore play significant role in proposals for universal
TQC[10, 1].

The earliest theoretical investigations of p-wave superconductivity focused on ’intrinsic’ p-
wave superconductors, such as Strontium Ruthenate (Srp;RuQO,4) and the v = 5/2 quantum Hall
effect (QHE), that is mappable to a p-wave superconductor by a CS transformation. The Sr,RuO4
is a highly anisotropic, layered material with three bands crossing the Fermi energy[11, 12]. In
addition, it has a weak to intermediate spin-orbit coupling that does not break the spin degeneracy of
topological surface states. Hence the Bogoliubov quasiparticles on its surface are spin-degenerate,
thus half-quantum vortices are required in order to nucleate isolated MZMs. The existence of
such vortices has not yet been established[13]. In the v = 5/2 QHE, the controversy surrounding
the nature of its state and complexity of its effective description tends to mask clean signatures of
MZMs[ 14, 15], though much progress has been made in determining its correct ground state[ 16, 17].
One possibility of overcoming such issues involves the fabrication of heterostructures in which an
interface between a topological insulator and an s-wave superconductor can be mapped into a
spinless p-wave superconductor[18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Many proposals involving
the use of other materials have been made, showing that a topological insulator can essentially be
replaced by a 2D quantum well with either Zeeman or Dresselhaus coupling and Rashba spin-orbit
coupling([28, 29, 30, 31, 32, 33, 34]. Another promising route to topological superconductivity
is to deposit magnetic atoms on the surface of an s-wave superconductor with a strong spin-orbit
coupling[35, 36, 37].

MZMs have been suggested as the basis for topological quantum computing, with computational
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steps made by physically exchanging (braiding) positions of the quasiparticles, as is illustrated in
Figure 1.1. In principle, the resultant state depends only on the topology of the exchange; the
physical system is therefore argued to be robust against local perturbations. In a 2D p-wave
superconductor vortex defects bind MZMs that endow them with non-Abelian exchange statistics.
The braiding of MZMs may result in a unitary transformation in the space of ground-state degenerate
manifold. However, braiding operations we can only perform single-qubit rotations by an angle
m/2 in the Hilbert space, which are not rich enough to support all the gates required for a universal
quantum computer[38, 39, 40]. The Abelian statistics, attributed to the above-mentioned vortices,
can supplement the missing operation by generating the 7/8-phase gate, completing a universal
gate set. This gate can be generated in a topologically protected manner by performing certain
operations that change the topology of the system [41, 42, 7]. It is therefore quite important to
formulate a cogent theory that accounts for the dynamics of vortices in p-wave superconductors.

In order to shed light on the collective response of the 2D spinless chiral p-wave supercon-
ductor to external electromagnetic fields, a low-energy effective action has been derived by the
standard gradient expansion method [43, 44, 45, 2, 46, 47]. However, in this derivation vortices
have generally been left out. It appears then that the Abelian exchange phase of vortices, while
surmised from the conformal properties of its edge states or the properties of candidate bulk wave-
functions [48, 4, 49], has never been derived from a microscopic model [50, 51]. In particular, it
has generally been accepted that its value is universal. We showed that, in standard derivations of
the action of p-wave superconductors, a crucial term that is directly responsible for this universal
exchange phase is, in fact, lacking[52].

Realization of itinerant, non-abelian quasi-particles is the much-coveted goal of a large commu-
nity of physicists exploring topological states of matter[53]. It has been suggested that Josephson
vortices in topological Josephson junctions (TJJ) would constitute such MZMs and retain the uni-
versal exchange statistics of bulk vortices[9]. In contrast to many other systems, it is a relatively
straightforward matter to allow for braiding by experimentally controlling the motion of Josephson

vortices[54, 55, 56]. This braiding process could lead to spectral signatures of non-Abelian ex-
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Figure 1.1: Braiding Majorana Fermions. The spatial and space-time trajectories of a series of

exchanges resulting complicated braid of worldlines.

change statistics. Experimental and theoretical investigations of TJJs are now in progress[57, 58].
Although the TlJs are a promising way of exchanging MZMs, our study reinforces the hypothesis

that Josephson vortices retain the exchange statistics of bulk vortices.[59].

Many aspects of vortex-Majorana lattices in a 2D chiral p-wave superconductor have been
investigated extensively [60, 61, 62, 63, 64, 65]. In addition, using the tight-binding model, the
structure of vortex-bound states in a spinless p-wave superconductor was studied[66, 67, 68, 69].
It was found that the vortex Caroli-de Gennes-Matricon (CdGM) bound states play an important
role in the accumulation of charge in the vortex core [70] as well as that vortices and anti-vortices
accumulate different charges[71, 72]. We recently showed that the anomalous charge response, ¢,y
is a sum of two contributions, one which is non-universal and the other equals %, where « is the
Chern number of the superconductor. Moreover, we note that c,, is proportional to the anomalous
Hall conductivity, which in turn is proportional to the polar Kerr angle. Thus, these results should
affect calculation of the polar Kerr effect, hence they are significant for the determination of the

order parameter of superconductors. [47, 73, 74,75, 76, 77].
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In the rest of this chapter we will introduce several key topics, including the exchange statistics
of Majorana bound states, a path-integral description of a chiral p-wave superconductor, and the
topological annular Josephson junction in the presence of a soliton. In addition, we will present
the Thouless representation of the p-wave many-body groundstate and give a formula for the Berry

phase (Abelian case) in terms of this groundstate.



1.2.1 The exchange statistics of Majorana bound states

Finding materials that admit a topological phase is the first step in creating quantum devices
that are topologically protected, as any material must accommodate qubits for encoding quantum
information and quantum gates to manipulate them. Quantum gates may be implemented by
adiabatic, or the slow braiding, of topological defect worldlines, that end with their return to
their original positions. The braiding process transforms one ground-state to another state in the
same degenerate subspace. All braids can be built up from a finite set of elementary exchanges,
thus exchange statistics can be specified by the unitary matrices representing the effect of these
elementary exchanges on the groundstate manifold.

Up to a global phase, the non-Abelian statistics of MZMs can be inferred from the action of
braid group generators on MZM operators [38]. The action of the braid group generator 7; on
MZM operators is

Yi = Yi+l,
Tty Yie1r — Vi 3 (1.1)
Yi — ) forj#iandj #i+ 1.
By solving the BAdG equation, these topological properties of Majorana operators were shown to
exist in p-wave superconductor ground states[78]. In its ground state each vortex defect hosts one
MZM which can be combined into n complex Dirac fermions, thereby giving rise to the degeneracy
of the ground state equal to 2"~! for a fixed parity of particle number (i.e., each fermionic level may

be either filled or empty)[4, 38].

1.2.2 Path-Integral Description of a chiral p-wave superconductor

In a p-wave superconductor, those quasi-particles that exhibit non-Abelian statistics are flux //2e
vortices [79, 80]. We would like to be able to “integrate out” the Fermionic degrees of freedom and
make a loop expansion around a ’bare” Green’s function to obtain a low-energy theory [81, 82]. In

the following we introduce the basics of path-integral theory.
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The Bogoliubov—de Gennes Hamiltonian for a spinless p-wave superconductor is [43, 2]

—A)? 1 _
H = /d;/ dx wL ((p2—) — - AO) U + = [sz,, {A, Px + ipy} Yx: + h.c. ] , (1.2)
R R2 m 2

where p = —i'V is the momentum, ¢, WL are the electron field operators, A is the order parameter
that depends on space and time ,and A(r) is the electromagnetic vector potential. From here on we

assume e = /i = 1. The action functional corresponding to the Hamiltonian Eq. (1.2) is
S (Betna) = [ dt [ dx[80:G0) s~ H (B 800, (13)
R

where the fermion operators appearing in Eq. (1.2), 1//;, and Yy, were replaced by Grassmann
fields, denoted by ¢y, and ¢y, respectively. The partition function of the system is given by the
sum over all possible Grassmann field configurations, weighted by the action functional of the

fields,
Z-= / D (T, 1 )€ M), (1.4)

The action is quadratic in the Grassmann fields and the partition function can be straightfor-
wardly integrated out. We use Nambu notation
Px.1 _ _
mo=| | andii = ( Gt ) (1.5)
Px.s

Writing the action in terms of Nambu spinors gives

1 ; _ _ )
S (x> 11xt) = 3 / dt /R dx [7x:G 'nxs ], where 7' = i6, — H (1.6)

In terms of the Pauli matrices, The inverse Green matrix in the presence of electromagnetic fields
is
(p - TA)

g_l :iat_7-3( m

1 1
—p - Ao) - ETI{A, Py} — ETZ{A, Py} (1.7)

9



where 7; are the Pauli matrices and the order parameter is A = Age! ™),

The functional integration over a Gaussian of real Grassmann fields is

<= /D(ﬁx,z, Ux,z)eis(ﬁmnx’l) - l_[ P (gx_tl) = exp
Xt

%Irkg(gaj)], (1.8)

where TrA stands for 3y (X, t[trA|x, 7) and tr is the trace over the 2 X 2 Nambu space [83].

1.2.3 The topological annular Josephson junction in the presence of a soliton

In order to derive the effective Hamiltonian of the topological annular Josephson junction, we
considered the Josephson junctions described in Fig.(1.2). Josephson vortices are trapped in
insulating regions between superconductors and are solutions of the sine-Gordon equation; thus its
the order parameter is complex and its phase, in the weak coupling limit, obeys the sine-Gordon
equation. In the case of topological superconductors, such vortices can bind a localized MZM;
this despite the fact that they lack a normal core. We then linearize the corresponding Hamiltonian
for each of the edges and add a coupling term which allows for tunneling of Majoranas; the
Majorana tunneling term is found by taking the overlap between the two edge states. Only in the
case of counter-propagating Majorana edge states a localized MZM would appear in the Josephson
vortex[9].

The Hamiltonian of the topological annular Josephson junction with a moving soliton is
W:/mﬂmu (1.9)

where ¥, = (., )7 is a spinor which consists of a periodic and an anti-periodic Majorana field

(i.e., the fields are self-adjoint), respectively. The single particle Hamiltonian is
H = 1,ivo, — ,W(x, q), (1.10)

with W(x) = m(q) cos[n(x — g)/L] being the order parameter for a short Josephson vortex.

The representation of the Majorana field depends on its boundary conditions as follows
1 _'k - 1 k -
VUy=— e pxl//k , YUy=— é “xl//ka, (1.11)
x‘ﬁ%] , x\i%
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Figure 1.2: Josephson junctions. Left panel: p, +ip, / px + ip, junction. Right panel: p, —ip,
/ px +ipy. The direction of the propagation of Majorana edge states is marked by arrows. Dotted

lines indicate electron tunneling.

where

kp(m) = %m, ka(n) = 2% (n + %) , mneZ. (1.12)

The opposite signs of these exponents reflect counter-propagating Majorana edge states. For

numerical purposes we set a cutoff k,(npin) < kp < kp(Mmax), Ka(min) < ka < ka(Rpax — 1).

1.2.4 Thouless representation of the Hartree-Fock-Bogoliubov groundstate

The Hartree-Fock-Bogoliubov (HFB) groundstate can be represented as

|Q) = Aexp

> zijijj) 10) (1.13)

i<j

where ; is a fermion annihilation operator satisfying ;|0) = 0, Z = (VU™ !)* is a skew-symmetric
matrix, and the columns of the block matrix (U V)T are eigenstates that correspond to positive
eigenenergies in ascending order. Moreover, A = \/m is a normalization constant, ensuring

that (QQ|QQ) = 1. This representation is known in the literature as the Thouless Representation[84,

85].
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In the construction of the HFB groundstate we assume that all positive energy single-particle
eigenstates are related to the negative ones by virtue of particle-hole symmetry, |€) = 7,K|—¢€),
where K is complex a conjugate operator and 7, is the first Pauli matrix in Nambu space. In the
absence of degenerate eigenstates, this relation is automatically fulfilled. However, subspaces of
degenerate eigenstates should be spanned by states that fulfill the relation. For example, in the case
of two degenerate zero-energy states, we need to construct two orthonormal states, (v;|v j> = 0ij>
that are also particle-hole counterparts of one other, |v;) = 7. K|vy).

The case of zero-modes is more complicated than that of degeneracies at higher-energies
because it is not known a priori which one of the zero-modes should participate in the many-body
groundstate. In order to choose the correct zero-mode we check that groundstate is not orthogonal
to the bare vacuum, (0|Q) = \/m # 0. Otherwise U would be singular, resulting in an
ill-defined Thouless representation.

The overlap between two HFB groundstates is given by
Q1) = AjASypf Z (1.14)

where A; represent the normalization constants, Sy = (—1)Y®+1D/2 and

Z» —I
Z = (1.15)
I —(Z))

isa 2N X 2N skew-symmetric matrix with Z; = (V,-Ut.‘l)* andi = 1,2.

1.2.5 The Berry phase (Abelian case)

We are primary interested in the geometric phase, or the Berry phase, accompanying an adiabatic
exchange of vortices over time . We parametrize the process using a set R so that the Berry phase

acquires the form

tr )
Yn =1 / dt (n(R('))|VR[n(R('))R =i jé dR(n(R)|Vg|n(R)). (1.16)
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The time independent wave function, |n(R)), is defined uniquely up to a global phase which
can be gauged. Under the gauge transformation |n(R)) — ¢®)|n(R)), where ¢(R) must maintain
the smoothness and the single-valueness of the wave function. Under the same transformation the
Berry vector potential A, (R) is transformed as A,(R) — A,(R) — VRZ(R). Consequently, the
Berry phase will change by Ay, = — ?gc dRVR{(R) = {(R(t;)) = {(R(tf)) = 2rm with m being an
integer. This last equality is a result of R(#;) and R(#y), referring to the same point in the parameter
space while £(R) is allowed to be multivalued so long as the wave function is kept single-valued.

The Berry phase of a HFB groundstate along a closed path is y = /C dR - A(R) with
AR) = i((QVRQ) = %tr ((1 AV R AV Z’TZ)) : (1.17)

Z = (VU™")* and the columns of the block matrix (U V) are single-particle eigenstates corre-
sponding to positive eigenenergies in ascending order[86]. For numerical purposes it is preferable

to write the Berry connection without derivatives of inverse matrices,
i ’ -1 ’ | *
AR) = i(D|Vr®) = 7tr [VIV' -V (VT) + (UT) viv (UT) _vivur'r| . (118)

The complete derivation is in Appendix D.
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1.3 Short summary of the papers

(a) On the effective theory of vortices in two-dimensional spinless chiral p-wave superfluids

We calculated the Abelian exchange phase associated with the adiabatic exchange of vortices using
a microscopic model of a p-wave superconductor, determining that, in the standard derivations of
the action of p-wave superconductors, a crucial term that is directly responsible for this universal
exchange phase is lacking. By carefully sorting out the components of the theory’s gauge structure,
we showed how to produce the missing term of the CS type in the action. This allowed us to predict
the conditions under which the exchange phase will deviate from its universal value. We believe
that this new understanding will play an important role in harnessing Majorana fermions toward

universal quantum computation.

Ariad, Daniel, Eytan Grosfeld, and Babak Seradjeh. “Effective theory of vortices in two-
dimensional spinless chiral p-wave superfluids.” Physical Review B 92.3 (2015): 035136.

(b) Signatures of the topological spin of Josephson vortices in topological superconductors

Realization of non-abelian quasi-particles, known as Majorana fermions, is an ongoing challenge
for physicists exploring topological states of matter. Toward achieving this goal, we recently sug-
gested that Josephson vortices in TJJ would constitute such MZMs and retain the exchange statistics
of bulk vortices. In order to corroborate this hypothesis, we found the universal exchange phase
of Josephson vortices by developing a procedure to calculate the Berry connection of systems
possessing particle-hole symmetry. This calculation confirmed that the Abelian phase resulting
from the exchange between a bulk vortex and a Josephson vortex is 7/8. In addition, we suggested

an experiment by which to measure the presence of this phase.

Ariad, Daniel, and Eytan Grosfeld. “Signatures of the topological spin of Josephson vortices
in topological superconductors.” Physical Review B 95.16 (2017): 161401.
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(c) How vortex bound states affect the Hall conductivity of a chiral p + ip superconductor

This work extend our understanding of the anomalous charge response, ¢,y of chiral supercon-
ductors. It is established that in order to correctly apply the Streda formula for calculating ¢, it is
necessary to employ compact geometries that avoid edge effects. This, in turn, requires a careful
analysis of the effect of finite-radius vortex nucleation that leads to an adjustment of the Streda
formula. The modified Streda formula is then applied to calculate c,, for a p, +ip, superconductor
placed on a square lattice at zero magnetic field and zero vorticity. We show that ¢y, is a sum
of two contributions, one which is non-universal and the other equals «/8x, where « is the Chern
number of the superconductor. Moreover, we note that c,, is proportional to the anomalous Hall
conductivity, which in turn is proportional to the polar Kerr angle. Thus, these results should affect
the calculation of the polar Kerr effect, hence they are significant for the determination of the order

parameter of superconductors.
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Chapter 2

Publications

2.1 Effective theory of vortices in two-dimensional spinless chi-
ral p-wave superfluids

Daniel Ariad, Eytan Grosfeld, and Babak Seradjeh
Phys. Rev. B 92, 035136 - Published 20 July 2015
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PHYSICAL REVIEW B 92, 035136 (2015)

Effective theory of vortices in two-dimensional spinless chiral p-wave superfluids

Daniel Ariad and Eytan Grosfeld”
Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel

Babak Seradjeh
Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
(Received 20 July 2014; revised manuscript received 12 May 2015; published 20 July 2015)

We propose a U(1) x Z, effective gauge theory for vortices in a p, + ip, superfluid in two dimensions. The
combined gauge transformation binds U(1) and Z, defects so that the total transformation remains single-valued
and manifestly preserves the particle-hole symmetry of the action. The Z, gauge field introduces a complete
Chern-Simons term in addition to a partial one associated with the U(1) gauge field. The theory reproduces
the known physics of vortex dynamics such as a Magnus force proportional to the superfluid density. More
importantly, it predicts a universal Abelian phase, exp(ir/8), upon the exchange of two vortices. This phase is
modified by nonuniversal corrections due to the partial Chern-Simon term, which are nevertheless screened in a
charged superfluid at distances that are larger than the penetration depth.

DOI: 10.1103/PhysRevB.92.035136

I. INTRODUCTION

The two-dimensional spinless chiral p-wave superfluid is
the minimal model for describing the properties of many
realizations of topological superfluids and superconductors:
topological insulator-superconductor interfaces [1-3], the lay-
ered material Sr,RuQ4 [4-6], some cold atom systems [7,8],
and certain spin models admitting anyon excitations [9]. In
this model, the vortex defects of the phase of the pairing order
parameter bind Majorana zero modes that endow them with
non-Abelian exchange statistics [10—13]. Thus they have been
proposed as potential candidates for fault-tolerant, topological
quantum information processing [14—16]. In addition, they are
expected to admit a quantized Abelian exchange phase that
plays an important role in proposals for universal topological
quantum computation with vortices [17]. It is therefore quite
important to formulate a cogent theory that accounts for the
dynamics of vortices.

In previous work on this system, a low-energy effective
action has been derived by the standard gradient expansion
method [18-23], shedding light on the collective response of
the superfluid to external electromagnetic fields. However,
in this derivation vortices have been generally left out. It
appears then that the Abelian exchange phase of vortices, while
surmised from the conformal properties of its edge states or
the properties of candidate bulk wave functions [10,12,24],
has never been derived from a microscopic model [25,26].
Consequently, it remains unclear whether bulk vortices in
a chiral p-wave superfluid or superconductor exhibit this
exchange phase and, if so, to what degree it is universal or
how it is affected by the physics of the system.

To answer these questions, in this paper, we derive a
U(1) x Z, effective gauge theory that handles vortex defects
properly. The U(1) gauge field is governed by an action that is
identical to the one previously derived by gradient expansion,
including a partial Chern-Simons (CS) term. Interestingly, a
Z, gauge field emerges in the effective theory governed by
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a new full Abelian CS term. We show that the coefficient of
the partial CS term is not a universal quantity and depends
on the details of dispersion and higher-energy behavior of
the system. The full CS term of the Z, gauge field is, on
the other hand, a truly topological term with a quantized
coefficient. We calculate the exchange angle of two vortices
due to each CS term and show that the new CS term dictates
a universal Abelian exchange statistics phase of the vortices
equal to '™/, In contrast, for neutral superfluids, the partial
CS term spoils the quantization of the exchange phase by
adding a long-distance nonuniversal correction. For charged
superfluids, screening effects exponentially diminish the latter
over the effective penetration depth. This sets a low bound
for the distance between vortices during exchange processes
required for topological quantum computation.

II. GAUGE TRANSFORMATION

We start with the action for a spinless chiral p-wave
superconductor [27], Z = [ D(ij,n)e'S, where n = (¢,¢)"
and 7 = (¢,¢) are the Nambu spinors with Grassmann
variables ¢(r) and ¢(r) in the coordinate space r = (r,t). In
the following, we will interchangeably use z = ¢ as the third
coordinate and d°r = drdt. The actionis S = 1 [ dr 3G~ 'n,
with G~! = {9, — H the inverse Green’s function matrix and
the Bogoliubov—de Gennes Hamiltonian density [28],

A—A eiQ/ZA( )ei9/2
2 = . Ep-A t | 1Y . 1)
e*t&/ZA(p)TeftG/Z

_$p+A + At

Here, &, is the dispersion of excitations above the ground state,
p = —iV is the momentum operator, A(p) is the amplitude
and €% is the phase of the superconducting order parameter
(including vortices), and A = (A, A;) is the electromagnetic
gauge field. (In a neutral superfluid, A = 0.) We assume e =
¢ = h = 1. In the continuum, &, = p?/2m — ep with e the
Fermi energy and A(p) = v(px + ip,) with v the slope of the
pairing order parameter in momentum space.

In order to keep track of the winding number
around each vortex we define 0(r,7) = Z'}zl 0;(r,t), where
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0; = arg(r — x;) € 2w {;,2(£; + 1)]is the phase around the
vortex located at x;(¢) and £; is its winding number. We take
the branch cut of arg(r) to be the positive real axis and index
the corresponding Riemann sheets with the branch number
£ e Z[29].

The partition function is invariant under a unitary transfor-
mation, U, of the inverse Green’s function with a Jacobian of
unit modulus; that is, U = e/®e'" ™, where 1, Ty, and 7, are
Pauli matrices in the Nambu space. We demand that U respect
the particle-hole symmetric structure of the spinor fields. This
means that U must transform (77,7) in such a way that ensures
one spinor remains the conjugate transpose of the other and
each component of the spinor is the conjugate of the other.
The requirement is equivalent to the condition U t=1UTr,.
In the operator language, this is the condition to maintain
the fermionic commutations relations under the Bogoliubov
transformation. One can readily show that any such U is
composed of a finite product of the following matrices:
Ty, Ty, €#%, and ™1, where u € R and m € Z. The actual
number of distinct sequences can be reduced through use
of the commutations relations between the generators and is
ultimately finite.

To proceed further, it is convenient to gauge away the phase
of the superconducting order parameter. This will add space-
time gradients of 6(r,?) to the electromagnetic potential in the
kinetic term. A naive transformation, ¢%=?/2, which involves
only the phase of the order parameter, leads to multivaluedness
in the presence of vortices. To avoid this problem, Anderson
[30] suggested using the transformations e /= F1/2 resulting
in the superfluid velocity appearing as an effective gauge field
in either the electron or the hole component of the Hamiltonian.
This gauge choice becomes possible when opposite spins are
associated with the two components of the Nambu spinor.
Franz and TeSanovi¢ [31,32] developed the transformation
/(@10 i~ for 3 periodic bipartite vortex lattice, where
A and B are the two sublattices. The vortices should be
assigned to the subsets in such a way that the effective magnetic
field vanishes on average. Physically, a vortex assigned to
subset A will be seen by electrons and be invisible to holes,
while vortex assigned to subset B will be seen by holes and
be invisible to electrons. Inevitably, in both transformations,
particle-hole symmetric structure of the spinors cannot be
maintained without additional constraints on the ensemble of
allowed partitions of 6.

Instead, we suggest the following transformation:

U= eiTIQ(r,f)/zeiy(r,t)’ (2)

where 6 is the phase function and y =7 ) it keeps
the transformation properly single-valued by supplying the
required sign each time the winding number in 6 changes as
it evolves in space and time. Our transformation is similar
in spirit to the Franz-TeSanovi¢ transformation, especially
as formulated in Ref. [33], but it manifestly preserves the
particle-hole symmetry of the action. Upon applying this gauge
transformation, two gauge fields appear in the action: the
a, = A, — 9,0/2 couples only to the kinetic energy terms,
with opposite signs for particles and holes, and the b, = 9,y
couples minimally to momentum, both in the kinetic energy
and in the pairing term. We note that the b gauge field is
associated with the vortex branch cuts and its corresponding
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current is proportional to the vortex current. After this

transformation, we find
G =id — b+ v.a, — 1,h,(p — b.a), 3

where the 3-vector h(p,a) = (NA(P),IA(P),&p—r.a)-

III. EFFECTIVE ACTION

We can now integrate out the fermion fields to find
the effective action, S = éTrln G, where Tr(-) stands for
fdrdt(r,t|tr(-)|r,t) and “tr” is the trace over the Nambu
space. A tedious but straightforward calculation yields (see
Appendix), to second order in the gauge fields,

Sett = /dl‘dt (na, + ptatz — pijaid;

K Kb
— és,ijataiaj + &Tgxﬂpbxaubv>» (4)

where ¢,,,, is the antisymmetric tensor and latin indices i, j
run over the spatial components. The coefficients appearing in
Eq. (4) are found in terms of g(k) = h(k,0) as follows:

1
n:—/dk1—§, (5)
82 lgl
1 2 +g
= dk }, 6
Pr 167‘[2/ |g|3 6)

1 8z
i = dk|1— == )0 0. 8. 7
Pij 167‘[2/ ( |g|> k: Ok; 8z @)

Note that n is just the superfluid density. The coefficient of the
partial CS term for a,

_ b [ E08idk 8v3k, 80
An 181
is nonuniversal and depends on the details of the system. The
coefficient of the full CS term for b, on the other hand,

dk, ¢))

K(l

Cam PR ®

Kp
is the Pontryagin charge of the field g, (k) and is therefore
always an integer. The action in Eq. (4) is our central result.

In the continuum limit, we have & = k?/2m — ey and
A(k) = v(k, + iky). Calculating the coefficients in this limit,
we find the following values: n ~ (mv)? ln(m%z) with A an
energy cut-off; p, = mk°/4m; and p;; = (n/2m)és;;, which
reflects the Galilean invariance in the continuum [34]. The CS
coefficients in the continuum limit are

-1

K = [1 —2 6F2@(—ep)] , (10)
muv

ky° = O(ep), (11

where O is the step function. Note that this extends the results
obtained in Refs. [20,21] to the strong pairing regime, € < 0.

For comparison, we have also calculated these coefficients
for a system on the square lattice. In this case, & = #(2 -
cosk,d — coskyd) —ep and A(k) = 5(sink,d +isink,d),

where d is the lattice spacing. The coefficients be’sq are
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FIG. 1. (Color online) Coefficients of the Chern-Simons terms.
The coefficients k, and «;, of the partial (orange) and full (black)
Chern-Simons terms are shown for a system in the continuum (solid)
and on the square lattice (dashed) for v = m. For clarity, we show
2k;. The Fermi energy is in units of 4/(md?), the bandwidth of the
square lattice, with lattice spacing d. The exchange angles due to the
partial and full Chern-Simons terms can be obtained by multiplying
the plotted values with 77 /16 respectively.

plotted in Fig. 1 as a function of md?er/4. We observe
that «," acquires the values +1 in the topological regime
0 < €r < 4/(md?) [35] and zero otherwise. In contrast, ke
and «; are clearly nonuniversal and vary with €y, showing
derivative discontinuities when crossing into the topological
regime. The sign change of ;" on the lattice signals a sign
reversal in the Hall response of the superconductor [21,36].

IV. VORTEX DYNAMICS AND EXCHANGE

The effective action, Eq. (4), now captures correctly the
physics of vortices. This is exemplified by the physical
significance of each term appearing in the action. The first
term gives rise to the Magnus force on a moving vortex.
To see this, note that for a moving vortex 9,0 = —x- V@,
where x(¢) is the position of the vortex. So, the first term
yields — [dt x - Ay with Ay = — [ dr nV6/2. Therefore
the vortex is subject to a Lorentz-like force x x B,; where the
Magnus flux By = Vy x Ay = ni is proportional to the
superfluid density. The contribution from the electromagnetic
gauge field A, in a superconductor vanishes due to the overall
charge neutrality of the system [37]. The second and third
terms, in conjunction with the Maxwell Lagrangian, give
rise to the usual screening of vortices through the Meissner
effect. The second term also contributes to the mass of the
vortex by generating a term | dt%mvii2 in the action, where
m, = [drp,(V0/2 — Ay

The fourth and fifth terms, as we now show, carry significant
information about the dynamics of vortices. Previous work on
the effective low-energy theory of the p-wave superconductor,
using only the U(1) part of our transformation [18,20], yielded
an action similar to that of an s-wave superconductor but with
an additional partial CS term. Stone and Roy [21] attributed
this partial CS term to the existence of a Hall-like response to
external fields. They recognized that the Hall current depends
on the external field primarily through its effect in modifying
the density. Note that the partial CS term we derive here is
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different from the one appearing in the literature, since in
our case V x V@ is explicitly nonzero due to the presence
of vorticity in 6. Moreover, the full CS term derived here
is entirely absent in previous work. As we show now, both
of these terms have significant contributions to the exchange
statistics of vortices.

Vortices in chiral p-wave superconductors are known to
obey non-Abelian statistics, the mechanism behind which
relates to the Majorana zero modes localized at their cores. In
the presence of 2n vortices, the ground state of the system is 2" -
fold degenerate. This degenerate ground state is further divided
into two sectors of definite parity (—1)Y = %1, where N is
the total fermion number. The full braid statistics of vortices
can be written using three matrices: R, F, and B. Roughly
speaking, R specifies the exchange of two vortices when
their fusion outcome is known, F specifies the associativity
of the exchange among three anyons, and B = F~'RF is
the generator of the full braid group of the vortices in the
model. The possible choices of R and F are constrained by
consistency relationships. These matrices have been computed
for a chiral p-wave superconductor by Ivanov [13] and found
to be, up to an overall phase, proportional to those in the Ising
anyon model. In this model, a vortex, o, and antivortex, o = o,
fuse according to the fusion rule o x o = 1[I 4 ¥, where
the fusion channels I and i are, respectively, the vacuum
(boson) and fermion. In this basis, the F-matrix is real and
is given by F = (0 + 03), while R = ¢~'* diag(1,7). The
phase x = m /8 is fixed in this model by consistency relations
between R and F [38]. However, without a full calculation
of x in the chiral p-wave superconductor, one cannot make a
meaningful connection to the Ising anyon model.

Our strategy in this work is to calculate x by performing
a monodromy, which describes a full encircling of one
vortex around the other. A general argument shows that the
monodromy in the vacuum fusion channel is R? = e~2/X [38].
This calculation may be done in the same ground state without
complications due to the ground-state degeneracy. In our field
theory, the monodromy is the Berry’s phase in the matrix
element of the evolution operator for the exchange of two
vortices in the even-parity ground state [39]. See Fig. 2 for
illustration.

At first sight, the Z, nature of the b gauge field in our
effective theory seems to make the calculation of the Berry’s
phase due to the full CS term tricky. However, this situation is
similar to the situation encountered in the singular string gauge
of the more common U(1) gauge theory, in which the gauge
field is zero everywhere except on a string emanating from the
vortex. One may show that the string gauge is continuously
connected to a smooth gauge without changing the winding
numbers along the process. Therefore we can calculate the
Berry’s phase contribution of the b gauge field in the usual
way by writing b = by 4 by, where by and b, are associated
with the two vortices, and considering the cross terms between
them. Both cross terms contribute equally since, by partial
integration, [ €,,b1,0,b20 = [ &3,vb220,b1,. Assuming for
simplicity that only vortex 2 is moving, we have €;,,0,b1, =
m8(r)8}, and

xp = %/drdt 5(F)by; = % (12)
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FIG. 2. (Color online) The exchange scheme of two vortices. The
exchange path is shown in green and the branch cuts in purple. In
a charged superfluid, the magnetic field, blue, is screened by the
supercurrent, red. The calculation is simplified when the path is a
semicircle of one vortex around the other followed by two radial
displacements.

which is, as advertised, quantized in the weak pairing (topo-
logical) regime to the value /8.

The partial CS term in (4) also contributes to the Berry’s
phase, albeit not in a quantized fashion due to the nonuniversal
behavior of x,. We write again a = a; + a, for two vortices
and consider the cross terms in the CS term between a; and
a,. In a superfluid, the external electromagnetic gauge field is
absent and we have a;, = _%3u arg(r — x;()), where x;(¢) is
the position of vortex 1, and similarly for a,. The calculation
is simplified by assuming that only vortex 2 moves, so that
ay; = 0. Then, only one of the cross terms contributes and

Tk

16
In a neutral superfluid, this leads to a nonuniversal long-range
contribution to the exchange phase of vortices.

By contrast, for a charged superfluid, the screened magnetic
field is screened as (V x A), = 2 Ko(r/1)/(2A2), associated
with a vortex at the origin, where K is the modified Bessel
function of the second kind and 1 is the (effective) penetration
depth. This modifies the result by a geometric phase,

Ka Ky Ro Ry
— [ drdt VXA =— 1—-—K{| — )|,
871/ rdt ay(V x Ayp), 6 [ R 1( R >i|

(14)
for a circular exchange at distance Ry. So, in a superconductor
the total exchange angle due the partial CS term is

sc T[KaR() Ro
=— K| —).
Xa 162 ‘( y

When the distance between the vortices is much longer than
A this exchange angle vanishes exactly. However, at distances
smaller or comparable to A, nonuniversal contributions to the
exchange phase will occur.

X;f = —g—;/dl’dl aZt(V X al)z = — (13)

15)
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Therefore the total exchange angle x = x, + x» depends
on the details of the dispersion and, in particular, is different in
a chiral p-wave superfluid from that in a superconductor due
to screening effects.

V. DISCUSSION

In the derivation above, we concentrated on the case where
the size of the core of the vortex is vanishingly smaller
compared to other length scales. We note that even in this
limit, the 27 winding of the phase entails the presence of
the protected zero mode in the topological phase. In addition,
higher-energy subgap states may occur, localized at the vortex
core [40]. The field theory presented above would include the
effects of both the zero mode and the subgap states in the two
gauge fields a and b if all orders of the loop expansion are
retained. To the second order, we find only the Chern-Simons
term, which fully encodes the topological exchange phase.
This phase is quantized and cannot be modified without
closure of the gap. Nonuniversal effects associated with the
subgap states may occur in higher order in perturbation theory,
which may include effects such as population transfer between
closely separated intravortex states [41].

Taking a finite core size may allow additional localized
subgap states to get trapped within the vortex. One can model
this case by varying the chemical potential €F around the
vortex through the topological phase transition between the
topological weak-pairing phase (e > 0) outside of the vortex
core and the nontopological strong-pairing phase (ef < 0)
within the vortex core. As far as topological properties are
concerned, this is equivalent to taking the order parameter to
zero at the vortex core but lends itself better to field theoretical
analysis [12,42]. In this description, the loci of € = 0 that
encircle the vortices’ cores are internal edges of the system and
accommodate gapless excitations. Although their proximity
to the Majorana zero modes may affect the coherence of
the vortices [41,43,44], as long as they do not mix with the
continuum states the Majorana zero mode remains intact [45].
To incorporate this into our field theory, we take the chemical
potential to be u(r) = €r + Su(r), where u(r) denotes the
deviation from €y and has support mostly within the vortex
core, i.e., within the coherence length. The new term can be
absorbed into @, — a, — . One new term that appears in
the field theory, uu(r)n, pushes vortices to diffuse along the
chemical potential gradient occurring due to other vortices
when their cores overlap. A second term odu(r)e;;o;a;
generates energetic contributions which go to zero at distances
that are larger than the coherence or penetration lengths
(whichever is larger). Since there is no coupling between a
and b in the effective theory, this modification does not change
the topological CS term. At distances larger than the coherence
length and to second order in perturbation theory, we find no
contribution to the topological Abelian phase associated with
the exchange of vortices.

It is also illuminating to compare our results to the non-
Abelian Moore-Read state, which is one of the prominent
candidate wave functions describing the quantum Hall plateau
at filling factor 5/2 [10,12]. While lying in the same uni-
versality class of Ising anyons as chiral p-wave superfluids,
the Moore-Read state is realized at large magnetic fields,
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leading to the appearance of an additional Chern-Simons
term in the mean-field action. This extra term endows the
quasiparticles with an e/4 charge and half a flux quantum of
fictitious magnetic field. Consequently, there is an additional
7 /8 exchange phase for quasiparticles, which should be added
to the pure Ising /8 contribution, for a total exchange phase
of m/4. Nonuniversal deviations from this value must be
governed by the magnetic length, so any mapping of our results
to the Moore-Read state, if it at all exists, remains to be worked
out. In contrast to the Moore-Read state, our main result
here demonstrates that vortices in a screened chiral p-wave
superconductor could realize a pristine Ising anyon model.

VI. CONCLUSION

We have derived an effective action of vortices in a spinless
chiral p-wave superfluid by properly treating the vortex branch
cuts and revealed an Abelian Z, gauge structure for the
chiral p-wave superfluid. In principle, our transformation is
applicable to any pairing symmetry and arbitrary distribution
of vortices. In the s-wave case, we have checked that this does
not produce additional terms in the action. In the d-wave case,
a similar approach has been used to formulate an effective
theory of cuprate superconductors [46,47], but no CS term
was found.

The topological quantum computation scheme relies
on adiabatic braiding of non-Abelian anyons to gener-
ate the quantum computation. Among non-Abelian anyon
models, Majorana fermions are arguably the closest to
experimental work. However, braiding of vortices carrying
Majorana fermions is nonuniversal unless supplemented by
a missing 7 /8 gate. While this gate can be generated by
sacrificing topological protection it remains of fundamental
importance to provide a proof-of-principle topological scheme
to supply the missing 77/8 gate, thus avoiding costly error
protection protocols. The results presented here allow the
realization of the missing 77 /8 gate through multiple braiding
of the anyons [17]. As argued above, such braidings should be
performed at distances larger than both the coherence length
and the screening length.

In this work, we restricted our attention to the Abelian
gauge transformations (2). This is enough to infer the Abelian
exchange phase of vortices. It can also be used to deduce the
existence of zero energy Majorana modes. Using the particle-
hole symmetry of the Hamiltonian density, we can write the
number density of zero modes as vy = 2(ij(r)n(r)) [48,49].
Now, since

K
(AN = 288 /3b) = 37V x b,
and b is defined as a Z, gauge field, we find
vo=1kp Y 8(r—x;(t)) (mod2), (16)
J

which is quantized and equal to the single winding vortex
density (mod 2) in the weak pairing regime. A natural
question for future work is whether the other parts of the
full group of gauge transformations harbor additional physics.
Indeed, as is well known, the zero-energy Majorana modes
endow the vortices with the non-Abelian statistics of Ising
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anyons [12,13]. It would be interesting to see if such a
non-Abelian representation emerges in the gauge structure of
the effective vortex action by using the entire group of gauge
transformations.
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APPENDIX: DERIVATION OF THE ACTION

In the following, we provide the details of the derivation
of the effective action appearing in the Results section,
Eq. (4). We first write the “dressed” Green’s function
as Gl = Gy ' 4 v, where the “bare” Green’s function is
Go(k) = (k;1 — g(k) - 7)~! and V depends explicitly on a and
b,i.e.,

V =-b+ 1.0, — 1,8, (p —b,a)+ 1,h,(p,0). (AD)

We now perform a perturbative expansion to second order in
the gauge fields, writing

1
Ser = —i InPf(G™") = —iETrln(g_l)

=_éTnn@55_%Tum1+gmo (A2)

12

i i i
=5TrIn (Gy') = STe(@GoV) + 7 Tr(GoV GoV)-
The fields a and b couple via their associated currents

jcﬁl = 8#1'2 + 8kugz(l - 81“)7

Ji =095 (A3)
To calculate traces, we use the following formulas:
tr{t, T} = 28,,,,
{17, 70} = i€, (A4)

tr{TAT;LTvTG} = 2(8Au5va - 3Av8un + (S}LUS;LU)‘

1. The nonvanishing terms

We proceed to derive the coefficients of the five terms
appearing in the action, Eq. (4).

The coefficient n. The coefficient multiplying a, is
n= —2(2’—71)3 f d3ktr(Gyt.). Since it contains an integration
over a single Green’s function, care should be taken in its
calculation. The correct analytical structure requires that the
Green’s function is multiplied by an exponent e'%", where
n — 0, leading to the expression

i sk + g, ;
_ Pk LB gk (as
S TGS Z/ K —gP+in’ (A5

=+
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1

FIG. 3. Contours of integration and poles of the Green’s function.
The contours of integration that are used in zero temperature
calculations for the particle (top) and hole (bottom) part of the Green’s
function.

Using contour integration over k; (see Fig. 3 where A =

V1g|* — in), one obtains the expression

1
n=— / k(1 52).
8m2 gl
In the p-wave case, the integral is formally divergent and
an energy cutoff A = A7/(2m) — € needs to be introduced

(here Ay is a momentum cutoff set only by the inverse lattice
spacing)

(A) m/+Ad I 5 (A7)
e ] Ly = e &

The coefficient p;. Writing the appropriate second order
correlator,

(A6)

pt=32 3

i [dgkk?—g%—g%g?
167° (k? — 1812 +in)’

/ d’k tr(Goj1Gojt)

1 gr+e;
= dk ,
1672 lgl?
where we used the integral
00 k2 P 2
/ dkr o 1 +ﬁ 5 — lﬂ( a|g|3+ﬂ), (A8)
o (k= 18I +in) 2lg]
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witha = 1 and 8 = g2 — g; — g;. For p-wave superfluids in
the infinite system limit,

1 v2Kk? mK>°
o= 1o [ i = (9)
T (513-1-1)21(2) 4r

where «2° = (1 — £ ‘”') coincides with the coefficient of

the partial CS term, {0 be derived below.

The coefficient p;;. Formally, this coefficient has contribu-
tions both from first order and second order in the gradient
expansion. The first-order contribution is

2(2_ )3 /d3k tl'|:g0< 2Tm81j)i| = —%5,‘1‘. (A10)

For g, =&, we can write §;;/m = 04,0y, 8., to obtain the
form in the main text. The second-order contribution exactly
vanishes following the integration over k;,

32 3 /d k tr(Goj.Gojl)

_ ! /d3k
1673

The coefficient k,. To calculate «,, we consider the

correlator of j! and ji to first order in ¢; (no summation
convention)

iq
Pk o —
P / r( K, gof3goak

g 3
= d’ktr| [0 ,

i’ / r([ ki G0 t%]go o, )

- 16 Z/ Igl2 +in)
_ —ig 0gm agz
= 3n2 Z/ 1817 "8 0k, ok,

For the infinite system p-wave superfluid this results in (no
summation convention)

0g; 08,

k2 + |g|?
ok Ok (

5 . a=0
ki —1g1> +in)

(Al1)

— GoT30, go ok, )

dgm 08z
ok kj

2€m8e o

(A12)

. 2k2 .
3y / _ _1qi€ij
32mm? (E2 +v2k2)¥2 16w ¢

(A13)

The coefficient kp. For convenience, we consider one of the
correlators giving rise to the CS coefficient

I
e [ dkutan Gotor, g 000G, 8 )
64

— Go(0k, & - )%, Go(3k, g T)]

] €289k, 8v Ok,
_ e /dk 2.8 Ok, 8v Ik, &x (Al4)
32n? lgI?
For the infinite system p-wave superfluid, we get
1 +€
Kk = — [ dk Gete? O(er). (AlS)

e (5 —er) T
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2. The vanishing terms

We provide an argument for the decoupling of the @ and b
fields, as well as for the vanishing of all mass terms for the
field b.

The decoupling of the fields a and b. It can be shown that
the integrand of the correlator describing the coupling between
a and b,

/ d3ktr[g0 <k + ‘é) J0)Go (k - Z)j;(k)], (A16)

is always odd under k — —k. Therefore it vanishes to all
orders in g following an integration over k.

The absence of mass terms for the field b. In first order in
the gradient expansion, we find the following contribution to
the mass of b:

U Y B
2(271)3]‘1’“{%( Zm)]_ m

(A17)
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Another contribution appears in second order (no summation
convention),

! 3 o i
39 /d k tr(GojsGoy)

1
= /dk
1672

where in the infinite system p-wave superfluid we get, after
integration over the angle of k,

1 [N v2 k| [ k*
— — 4262 +0%K? ).
167 J, P <2m2+ Frv

While each is formally divergent, the sum of the two
contributions, Eqgs. (A17) and (A19), now converges to zero,

im | — [ k| K e e
im [——— — = +2ez+v
A—oo | 2m 167 lg|? \ 2m? F

= i (2 B el o
Ag—o0 \ 2m 4 8

817 (3, & 0k, 8) — (8 0k, 8)*
1g13 '

(A18)

dK| (A19)

(A20)
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We consider a modified setup for measuring the Aharonov-Casher phase which consists of a Josephson vortex
trapped in an annular topological superconducting junction. The junction encloses both electric charge and mag-
netic flux. We discover a deviation from the Aharonov-Casher prediction whose origin we identify in an additive
universal topological phase that remarkably depends only on the parity of the number of vortices enclosed by the
junction. We show that this phase is £27 times the topological spin of the Josephson vortex and is proportional
to the Chern number. The presence of this phase can be measured through its effect on the junction’s voltage
characteristics, thus revealing the topological properties of the Josephson vortex and the superconducting state.

DOI: 10.1103/PhysRevB.95.161401

One of the exciting aspects of topological order is the any-
onic excitations it supports, which admit fractional charge and
exotic quantum statistics. Several fundamental types of anyons
can be realized as vortex defects in topological superconduc-
tors, generating intensive interest in their properties [1-3].
However, detecting the anyonic properties of these vortices is
an ongoing challenge. It has been proposed [4] that Josephson
vortices retain the anyonic properties of bulk vortices and thus
could be viable candidates for the interference experiments
required to unequivocally measure their statistics. However,
determining the anyon class of Josephson vortices requires
finding the value of their universal exchange phase, which has
not yet been reported. This exchange phase is of particular
interest as it was argued that it could be used to supplement
the set of quantum gates generated by the Josephson vortices
to form a universal set [5,6].

In this Rapid Communication, we report a method to calcu-
late the universal exchange phase for Josephson vortices and
propose a proof-of-principle experiment by which to measure
it. We derive an effective quantum Hamiltonian for a Josephson
vortex in a topological Josephson junction [T]J; see Eq. (12)],
unveiling the role of the low-lying Majorana edge states in the
soliton dynamics. For the case of a soliton going around an
annular Josephson junction [7,8] (see Fig. 1), the soliton accu-
mulates a universal phase related to the exchange phase of Ising
anyons. This phase can be exploited to induce a persistent mo-
tion of the vortex around the junction, triggered by the nucle-
ation of an additional vortex in the region enclosed by the junc-
tion (i.e., by changing the magnetic flux ® through the central
hole). This induced motion drives the Josephson junction into
its finite voltage state [9], revealing the presence of the phase.

Our results therefore uncover a significant difference
between nontopological Josephson junctions and TJJs. For
the former, an externally induced charge Q can drive the
Josephson vortex into a persistent motion [7] through the
Aharonov-Casher effect [10—12]. This system is analogous to
an Aharonov-Bohm ring for electrons. However, the Josephson
vortex remains unaffected by other vortices in the system. In
contrast, for TJJs, the persistent motion of the Josephson vortex
can be controlled with, instead of one knob, two: (i) contin-
uously using the induced charge Q in the region enclosed by
the junction and (ii) using the enclosed flux which nucleates
vortices inside the path of the vortex, hence changing their
parity. In units of electron charge, the nucleation of an extra

2469-9950/2017/95(16)/161401(5)
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vortex within the central region is equivalent to an e/4 (where
e is the electronic charge) shift in the enclosed charge Q.

The dynamics of a TIJ is governed by a modified sine-
Gordon Hamiltonian, where the regular bosonic degrees of
freedom couple with the low-lying Majorana fermions. In
particular, properties of phase solitons (Josephson vortices)
through the junction are modified so that each soliton carries
a Majorana zero mode [4,13—-16]. While experiments to probe
the presence of this Majorana mode have been proposed
[4,14,17], little attention has been given to the universal
properties of the host soliton itself.

We start by discussing the fundamental mechanism behind
the topological spin of a Josephson vortex. We then derive
explicitly an effective Hamiltonian for the Josephson vortex
and demonstrate how the topological spin plays a role in its
dynamics. Next, we calculate the Berry connection governing
the phase that the Josephson vortex accumulates. Finally, we
propose a setup for measuring this phase.

Topological spin of the Josephson vortex. We start by identi-
fying the origin of the topological spin of the Josephson vortex.
TJJs [13,18] differ from their nontopological counterparts by
the presence of a pair of one-dimensional counterpropagating
Majorana states present at the junction, with a Hamiltonian
Hy = H + H (H describes the external edge, and H describes
the internal one):

H:i%/dxwmmw@x

ﬁ:q%/m&m&ﬂn (1)

FIG. 1. An annular topological Josephson junction trapping a
single soliton. The soliton is depicted in blue. Counterpropagating
Majorana edge states are nucleated in the junction. A charge Q and
phase @ are induced externally within the central region (red).

©2017 American Physical Society
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Here x € [0,L] is the coordinate of the edge, and v is
the neutral edge velocity. The fields obey anticommutation
relations of the form {y(x),¥(x")} = (¥ (x), ¥ (x")} = 8(x —
x"), and {¥(x),¥(x")}=0. We perform the following mode
expansion:

1 )
w(x) — \/ZZeanx/me
_ 1 . _
1#(x) — \/ZZeznmX/wa )

The modes v, satisfy {{,, ¥} = 8,40 (With similar nota-
tion for the opposite chirality). Note that in particular this
implies ¢ = 1/2 (for either chirality). Plugging this into the
Hamiltonian, we get

2nv| 1 2mv
H = —| — _ = —
3 |:2§ ny n\bn:| 2 L,

n

_ 2mv| 1 - 2rv 5
H== L;nw_nwn} ==L 3)
We now explore the properties of £ and £, the dimensionless
momentum operators. Using Eq. (2), periodic boundary con-
ditions on the Majorana field imply n € Z, while antiperiodic
boundary conditions imply n € Z + %

We examine the change in momentum when the boundary
conditions are exchanged between periodic and antiperiodic
for a closed circular Josephson junction in the absence of
tunneling. We write £ and £ as

L= mh =5 o= Y+ Lo,

n>0 n>0 n>0
L= mhdn— 5 Yo=Y g+ LN, )
n>0 n>0 n>0

where Lo (L) is the ground-state contribution and N, (N,)
denotes the number of vortices enclosed by the external
(internal) edge. Specifically, when there is an odd number
of vortices enclosed by the edge, n € Z; otherwise, n €
Z + 1/2. We now calculate the difference in the ground-state
contribution in the presence of a Josephson vortex within the
junction, i.e., N, = 1 and N, = 0. We employ a regularizing
function F(x) such that F'(x) = 9, F(x) decays to zero faster
than 1/x> when x — oo and F’(0) = 1. We calculate the
regularized sum [19]

ALy = Lo(1) — Lo(0)

-1 i:: {nF/(om) - <n - ;)F[a(n - ;)“ )

By taking the limit « — 0 we now get

o0

| 1
ser= o = rfe(e- 1))
1. fa AN
= —30 n§=1 |:2F (an) — (5) SF (om)j|
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1 *© 1 ! o "
= —=0, d(an)| = F'(an) — = F"(an)
2 " Jap 2 8

Lo el — L
TeF O+ F(0)] = . (6)

This result gives the value of the topological spin of the vortex,
which is related to the dimension of the spin operator of the
Ising conformal field theory (see, e.g., [20]). In the following
we explore how this quantized momentum shift can affect the
dynamics of the soliton in the presence of tunneling between
the two Majorana edge states.

Effective Hamiltonian for the Josephson vortex. We now
proceed to show that the effective description of a Josephson
vortex contains explicitly the topological spin discussed above.
We turn on the electron tunneling across the junction, leading
to a Josephson term and a Majorana tunneling term.

The Josephson term is encapsulated in Hy,, which governs
the dynamics of the relative phase degree of freedom ¢ across
the junction [21]:

H — he J 1, 1, 1 ] 7
<p—?/ Nam¥ t39 + gl —cosely, (N

where ¢ = (g2¢/h)IT, with IT being the canonical momentum,
A is the Josephson penetration length, ¢ is the renormalized
velocity of light, and g is a dimensionless constant which
depends on the parameters of the junction [7].

The Majorana tunneling term is first order in the electron
tunneling and takes the form

Hun = i / dx W) P (o), ®)

where W(x) = mcos [¢(x)/2] is the Majorana mass term
[4,13].

The full Hamiltonian for the TJJ, Hyyy = H, + Hy + Hyy
[4], is an extension of the supersymmetric sine-Gordon model
for general values of m [15]. The bosonic degrees of freedom
couple with the low-lying Majorana fermions, which we now
turn to solve in the presence of a single soliton.

We consider the solution for a classical soliton in the
nonrelativistic limit which for short and long Josephson
junctions takes the approximate forms [22]

s (x,q(1)) = 27 (x_L"(’)> A> L,

@s(x,q(t)) >~ 4 arctan exp (x—)hq(t)> AKLL, (9

respectively, with a center-of-mass coordinate at g(z). We
plug the solution into the Euclidean action derived from
the Hamiltonian H, to get the energy associated with the
soliton center-of-mass coordinate [23], %mqu + Ey, where
we defined the soliton mass m; [m, = (27)%h/g>¢L for A > L
and m, = 8i/g?¢A for A « L] and the soliton rest energy [7].
We now proceed to the Majorana sector, Hy, = [ dx W' HyW,
with W = (¢ ¥)7 and

1 ivd
H0=|: *

- iW(x,CI(t))]’ (10)
2[—iW(x,q(1)

—iv0y
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where W(.x,q ) =m CO?[%()‘JI (T_ ))/2]. The equations si.m- zero-energy Majorana fermions, (o =& i,)/~/2. The spinor

plify considerably by taking a Galilean boost to the moving  ig then rearranged so that particle-hole conjugation is written

frame, as 7, K (where 7, is the first Pauli matrix in Bogoliubov space
X =x—q(t), =t apd K isicompilex conjugation). The Hamiltonian can then be

diagonalized via

ax = ax’a at = _qax’ + al’-

H  H\(U V* E 0)\(/U Vv*
We see that the Majorana fields couple to the center-of-mass i —mN\v v)=\o —e)\v u) (14)
velocity of the soliton via a vector-potential-like term that 2 !

measures the total momentum carried by the two counterprop- The correct choice of the zero mode that is contained in
agating edge states, taking the form the positive-energy group of 2N + 1 eigenvectors leads to
. a nonvanishing determinant of U. We can then use Eq. (14)
l,q / dx(Y oy + Vo) = zlq([, - D). (11) to form the BCS ground state |£2,). Explicitly, for ¢ = 0, the
2 L Hamiltonian blocks are H; = zZo kf” and
The junction Hamiltonian Hryy, written in the background of a N N
single soliton, is given in terms of the soliton’s center-of-mass H— m 0 (o 0
momentum p (which we now reinstate as a quantum operator) 275 ® ke? Oy V2 ® keal oy ®0 |
as
o 2 The Berry connection for |£2,) is given by
Hy = Eo+ 5 [ﬁ—L(ﬁ—ﬁ)] i 1 ,
s £(92,10,2,) = 7 Trl(1 + 8D 7"[g'e" — 2@}, (15)

TV 5 -
+ T(E + L)+ f dx W)Yy (x). (12)  yhere g = (VU1* [24].In addition, we define the translation
operator T for the soliton x, = T, xo, with x, = (U], V).
T, is given explicitly by T, = Z, P,, with P, generating the
translation and Z, generating the Z, transformation:

This Hamiltonian describes the dynamics of the Josephson
vortex within the junction and is our first main result. The
ground-state contribution to the vector potential is given by

2N+1
oy By = (L (13) P, = PO @ PO, PO = p@ = (] (I mimL
L L 16 n=l1

coinciding with the one calculated previously in Eq. (6). This IN+1

suggests that the topological spin of the soliton affects its Z, = ZO0 g z® 70O = 7@ _ @(_Dmod(nl)l_%%l,

dynamics and may be measurable. We next turn to show that nel

the low-lying fermion states do not affect the universality
of this phase in the adiabatic limit by providing numerical
evidence.

The Berry connection. Due to the interactions of the

We diagonalize Eq. (14) numerically for ¢ = 0, and using
T, we obtain the eigenvectors for any other position of
the soliton. We substitute into Eq. (15), performing the
Josephson vortex with the subgap states of energies A, dgrivative symbolically. The resqlt is p resent.ed. in Fig. 2
(n =0,1,...), the phase of the soliton is universal only when with the overlap calculated using the Onishi formula,
its traverse time around the junction is large compared tofi/ A . [(82-41829)] = V]det x_, xq| [25] for two counterpersisting
We establish this by introducing a numerical procedure for
finding the Berry phase that the ground state |€2,) accumulates

as function of the position of the soliton, q. 33 /8 e
We take a short Josephson junction. When the soliton goes = et 1.2
adiabatically around the junction, the Majorana edge states 2. e 1.0%
depend parametrically on its position. In addition, there is S / 4 082
a Z, phase associated with the motion of the soliton: when ) z
the soliton completes a cycle, each fermionic mode enclosed if, x 0'6§
by its motion acquires a minus sign. We work in momentum % / 8 0.43
states and truncate the Hilbert space to retain 4N + 2 modes: 5 A 02

2N modes in the antiperiodic edge and 2N + 1 modes in the 8

periodic edge, the latter including a Majorana zero mode . 0 r 2L 3L
The final mode we retain is the extra Majorana zero-energy Soliton displacement

sFate ¥y, which is localized far from'the Josephson Junctlpn, FIG. 2. Numerical results for the geometric phase accumulated
either at the center of the annulus or at its outer edge, depending by the persisting Josephson vortex. The dashed brown line describes
on the parity of the number of vortices in the central hole. the geometric phase accumulated by each persisting soliton in the
In addition, we perform a gauge transformation in which presence of a vortex within the central region. In addition, the solid
the Majorana fields are single valued under ¢ — g + L by  black line describes the overlap norm of two counterpropagating
absorbing the Z, phase into the Majorana tunneling term. solitons, which becomes nonzero at half cycles. At these points the

Next, we transform the Hamiltonian into a Bogoliubov form  geometric phase of each soliton acquires its universal values n/16,
for fermions by taking appropriate superpositions of the two neZ.
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FIG. 3. Energy spectrum for the Josephson vortex. Solid red lines
describe the energy of the Josephson vortex in the presence of an
even number of vortices enclosed within its path. Dashed blue and
dotted green lines describe the case with an odd number of vortices
(for even and odd fermion parities, respectively). The velocity of
the persisting soliton is proportional to the gradient of the energy,
vy & 0 E. Fermion parity changing effects open a gap between the
green and blue lines, disorder opens a gap between lines of the same
color.

solitons, demonstrating that the topological spin is, in
principle, an observable. We repeated the procedure taking
reversed boundary conditions on the two Majorana edge
states, obtaining the same phase but with an additional minus
sign, which reproduces Eq. (13) to machine precision.

Proposed setup for detecting the phase shift. We finally
consider the setup depicted in Fig. 1 where a single Josephson
vortex is trapped within the junction and the voltage between
the inner and outer superconducting plates is measured. The
energy spectrum of the Josephson vortex can be derived
from Eq. (12), and in the presence of an externally induced
Aharonov-Casher charge Q within the central region, is given
by

Q nyg ny :
ES_E€[2e+(4 * 16) N}’] ’ (16)
where E, is the charging energy for the junction, ny = (—1)"/
is the fermion parity within the enclosed path of the Josephson
vortex (Ny is the fermion number), n, = (=™ is the parity
of the number of vortices within the same region, and N; €
Z is the relative number of Cooper pairs between the two
superconducting plates. In the low-energy sector there is an
emergent dependence betweenn r andn,:If n, = 1,thenn, =
1, butif n, = —1, then n is free [4].

Assume we start from the case that there are no vortices
within the central hole in the annulus (Fig. 1), i.e., n, =1
and ny = 1. The junction can be tuned into the zero voltage
state by shifting the induced Aharonov-Casher charge Q. The
Josephson vortex accordingly acquires a vanishing velocity.
Next, we add an extra vortex within the central region of the
sample, shifting the value of n, to —1. The Josephson vortex
acquires a phase shift which is equivalent to a +e¢/4 shift in the
induced Aharonov-Casher charge (see Fig. 3). It then performs
a persistent motion, and the junction is driven into its finite
voltage state. This dependence of the voltage characteristics

RAPID COMMUNICATIONS
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of the junction on the number of vortices enclosed within the
junction is our second main result.

One possible realization of the system is a topological
insulator with an s-wave superconductor deposited on its
surface, forming a Josephson junction shaped as in Fig. 1.
The dynamics of the soliton will be largely determined by
the s-wave superconducting layer, while a Majorana zero
mode will be trapped by the soliton on the surface state
of the topological insulator. Furthermore, the charge on
the central island will be varied by means of a capacitive
gate [12].

Discussion. Our central result is the identification of a
relative /4 phase associated with a Josephson vortex in a
topological Josephson junction encircling an odd versus even
number of vortices. It is useful to compare this result with
the full conformal case which describes the physics with a
vanishing Majorana mass, m = 0. Then, vortex exchange is
captured by a standard fusion rule from conformal field theory
(see, e.g., [20]), 0(2)o(0) ~ z~Y3[I 4 2!/ (2)], where I is
the identity field and v and o are fields of dimensions 1/2 and
1/16, respectively. By identifying the field o (z) as the vortex
and 7z = x + iy as its coordinate, this equation reproduces
the presence of a —m/4 phase shift for a rotation of one
vortex around another, 7 — ¢*"z. For the case of an odd
fermionic number, a 37 /4 phase shift would ensue. Instead,
in our case, the nonzero Majorana mass term protects the
anyon properties decided by the bulk topological quantum
field theory, which is a manifestation of Ocneanu rigidity
[26].

Finally, we address the context of this work from ex-
perimental and theoretical perspectives. Trapping a single
Josephson vortex within an annular Josephson junction has
been experimentally achieved [9,27]. It was demonstrated
that the Josephson vortex is able to tunnel through a barrier,
revealing its quantum nature [9]. Interference experiments
of Josephson vortices have been reported [12]. Recently,
Josephson vortices were directly observed with scanning
tunneling spectroscopy, and their local density of states was
deduced [28]. More specifically, in the context of topo-
logical superconductors, quasiparticle poisoning may affect
observables that are sensitive to fermion parity-changing
effects. However, the e /4 shift discussed here remains immune
to a shift by e, and hence so is the residual motion of
the soliton generated by it. Possible realizations of annular
topological Josephson junctions were discussed in [4] us-
ing semiconductor heterostructures or p-wave superconduc-
tors (see, e.g., [29]). Solitons in other scenarios involving
p-wave superconductors and two-band superconductors were
discussed in [30,31]. Other papers touching on the Aharonov-
Casher effect in topological superconductors include [32,33].
The effective action of bulk Abrikosov vortices was considered
in [34].
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The physics of a planar chiral p £ip superconductor is studied for various vortex configurations. The
occurrence of vortex quasiparticle bound states is exposed together with their ensuing collective properties,
such as subgap bands induced by intervortex tunneling. A general method to diagonalize the Hamiltonian of a
superconductor in the presence of a vortex lattice is developed that employs only smooth gauge transformations.
It renders the Hamiltonian to be periodic (thus allowing the use of the Bloch theorem) and enables the treatment of
systems with vortices of finite radii. The pertinent anomalous charge response cy, is calculated (using the Streda
formula) and reveals that it contains a quantized contribution. This is attributed to the response to the nucleation
of vortices from which we deduce the system’s quantum phase.

DOI: 10.1103/PhysRevB.98.104511

I. INTRODUCTION

Measurement of the polar Kerr effect (PKE) in the su-
perconducting state of Sr,RuQ, indicates the presence of
time-reversal symmetry breaking [1,2]. However, so far no
quantitative agreement has been established between theoreti-
cal and experimental values of the Kerr angle [3—-8]. The latter
is proportional to the Hall conductivity, which in turn is propor-
tional to the anomalous charge response cy, [9]. The quantity
Cxy 1s finite only in a chiral superconductor [10,11], so the
measurement of the PKE provided some of the first evidence
for the p £ ip nature of the order parameter of Sr;RuO;.

In this paper, we calculate ¢, at zero magnetic field and
zero vorticity using a modified Streda formula and show that
Cxy 1s @ sum of two contributions, one which is nonuniversal,
and the other equals « /8w, where « is the Chern number of
the superconductor, as depicted in Fig. 1. An important insight
gained thereby is that an accurate evaluation of ¢, requires
the knowledge of the charge response to the application of a
weak magnetic field and a compensating vortex pair as dictated
by imposing periodic boundary conditions (PBCs). This is
equivalent to elucidation of the charge response following
a chirality flip of the superconductor. Eventually, however,
the effect of vortices characteristics (such as their positions
as well as their detailed structures) on c,, is minor, and our
main results appear to be universal. Once c, is elucidated, the
Hall conductivity at a zero magnetic field and vorticity can be
extracted from c,, using a standard procedure [9,11], and that
has bearing on the experimentally measured PKE.

In order to substantiate our main result, we need to consider
the response of the superconductor to the insertion of a single
Dirac flux quanta (® = h/e) and compensating pair of vor-
tices. Due to the PBCs imposed on the system when employing
the Streda formula, it is natural to solve an equivalent problem
for a system composed of many copies of the (originally finite)
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system, which maps onto an infinite superconductor in the
presence of a periodic vortex lattice. The vortices are assumed
to have finite radii, thus enabling us to explore the possible
dependence of c,, on the presence of vortex bound states.

A natural framework for studying the physics of a periodic
vortex lattice is to employ Bloch’s theorem. However, this
procedure is hindered by the fact that the vector potential
and the phase of the order parameter are not independently
periodic over the magnetic unit cell (MUC). One may try
to apply a gauge transformation to combine the two into
a single field which is proportional to the supercurrent. As
the latter is periodic in the lattice, Bloch theorem can be
employed. However, since the gauge transformation is singular
in the presence of vortices, this procedure introduces spurious
magnetic fields in the center of the vortices. These spurious

=== Analytical === Difference

= Numerical
x10~2

—4 0

FIG. 1. Average anomalous charge response c,, vs chemical po-
tential w for a planar p-wave superconductor. The result of a modified
Streda formula (Numerical) is compared with the prediction of the
effective low-energy theory of a p-wave superconductor (Analytical).
Here t = |A| =1 and & = 2.5. In addition, the magnetic unit cell
contains 40 x 41 sites and two vortices that are pinned on its diagonal,
partitioning it in a ratio of 1:2:1.
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fields either break particle-hole symmetry or introduce branch
cuts, originating from the vortex centers, that lead to numerous
technical obstacles [12-16].

To circumvent these obstacles, we develop an algorithm to
perform an efficient exact diagonalization of the Bogoliubov—
de Gennes (BdG) Hamiltonian for an infinite two-dimensional
(2D) vortex lattice in a general tight-binding model, that
completely avoids the use of singular gauge transformations.
Instead, a smooth gauge transformation is employed, that
renders both the order parameter and the hopping amplitudes
to be independently periodic on the lattice sites.

II. GENERALITIES

It is our perception that the algorithm developed here for
the diagonalization of the Hamiltonian is not just a numerical
trick, but rather, it meticulously exploits the pertinent physical
concepts. Thus, it is worthwhile to illuminate its construction
step by step right at the onset. First, we derive an exact
expression for the phase of the order parameter by summation
over vortices in an ordered array in a superconductor. Second,
we transform to another gauge that allows for simultaneously
taking the superconducting phase function and the Peierls
phases to be periodic functions (mod 277) without sacrificing
any of their properties. Third, we introduce a new gauge for
the vector potential, which we dub the “almost antisymmetric
gauge (AAG),” which allows accessing, in a system with
PBCs, the highest resolution for its magnetic-field dependence.
Fourth, we diagonalize the Hamiltonian in a single unit cell
under varying boundary conditions per the Bloch theorem,
i.e., for different values of the lattice momentum. Thus we
extract both the full spectrum of the Hamiltonian and its wave
functions.

III. HAMILTONIAN AND ORDER PARAMETER

For spin-1/2 fermions (spin projection s =1, |,), the BdG
Hamiltonian in its tight-binding form (taking i =c=e = 1)
consists of three terms H = T + A — (u — 41)N. The hop-
ping term reads

r+a; X
T =—t Zexp (i / A- d() Y va s¥rs +Heo (D

r,s,i

The pairing term for an s-wave superconductor is as follows:

Assave = Y A@WL W) +He., 2)

where A(r) = Ao(r)exp(i®(r)) with Ay(r), O(r) as real
scalar fields and a; = @;T; (with i = 1,2) are the lattice
vectors. For spinless fermions, we omit one spin component
from the hopping term and take the lowest angular momentum
p-wave pairing,

Ap—wave = Z Ap:tip(rv ai)lﬁ:uﬁjﬂ,i + H-C'v (3)

where A1, (r,a)=Ao(r)exp(£i Arg(a)) exp(i©(r)) exp
(éfrHaV@ -d€) and Arg(r)= Arg(x +iy). The super-
conducting order parameter is defined in such a way that the
U(1) gauge invariance is respected [13].

We recall that vortices are encoded as nodes of the order
parameter, characterized by a finite quantized winding number
of the phase ®(r) [17]. In order to form a vortex lattice we tile
the plane with a MUC. The MUC is chosen to enclose an
even number of vortices. Thus, each vortex within the MUC
constitutes a sublattice. The superconducting phase ®(r) can
be written as a sum over contributions of such vortex (or
antivortex) sublattices O(r) = Zf\il s;0(r —r;), where s; =
+ (s; = —) for vortices (antivortices) and r; is the position
of the ith sublattice with respect to the origin. Within each
sublattice, the phase 8(r) can be expressed by summing the
contributions of all vortices in the sublattice,

oM
o(r) = A}Lmoo |: Z Arg(r —mt; — nty) mod 27‘[:|,

m,n=—2M
4)

where 7; = g;a;T; are the vectors spanning the MUC, com-
posed of ¢ X ¢» atomic sites. Using complex variables
z = x + iy, we have

. (z T 2iz? it
0(z) =ImLog|ity| —, —— ) | — —arctan| — | ¢,
T2 (%] T T2 1)
(%)

where 7; is the complex representation of the vector ;.

It is important to note that, although the resulting function
6 (r) admits the correct windings at the positions of the vortices,
it is generally nonperiodic on the MUC. Therefore, using this
summation for taking PBCs for a single MUC (a torus) is
unsafe.

IV. LATTICE PERIODIC GAUGE

We proceed by taking a gauge transformation
that renders the order parameter and the hopping
amplitudes periodic in the MUC A — A + %V, X, A —
Aexp(ix), Yrs — explix/2)V¥,s. We note that the
supercurrent J %Vr(@ — A is periodic in the two
magnetic lattice vectors 7; and thus frr“i J-de
is similarly doubly periodic. Therefore, we can always
choose x(r) so that the fields ®'(r) = ®(r) + x(r) and
frr“" (A + 1V, x)-de are periodic (mod27) on the lattice
sites r,,., = (m/q1)t; + (n/g2)T2. We now show that there
exists a gauge that fulfills the conditions above for a MUC
composed of g x (g + 1) atomic sites for which g, — g1 = 1.
For a general vortex lattice, using the same notation as for
®(r) above, we write x(r) = ZlN:l sip(r, r;) where ¢(r, r;)
is written in terms of complex variables as

— )2 i 2
¢(z,z;) =2 Re [uarctan<ﬂ):| + g7 Re (Z—>
17T T 17T
Im?(z/7) Re(t1/12)
Im?(z; /1))
Im?(z/7;)Re(12/71) Im(z/7)
Im?(1, /1)) Im(t2/71)

+ [271 Re (Z—) - N}M (6)

) Im(ti/72)

—(q@+
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The resulting phase function ®" is now doubly periodic
as required. Furthermore, integrating the supercurrent J(r)
around the MUC reveals that

0= J-deochcbo—f A -de, )

MUC MUC
where ®¢ = h/(2e) = r is the superconducting magnetic flux
quantumand N, = ) ,Nz” | 5; is the total winding for the vortices
in the MUC. Due to the Dirac quantization condition [19],
requiring that ® = n(h/e) with n € Z when taking PBCs on
A, N,, must be an even number.

V. THE ALMOST ANTISYMMETRIC GAUGE

Our next step is to find a complementary vector field. Due
to the periodicity of the supercurrent, the vector potential is
required to fulfill the condition,

Alr+1,) = Ar) + %V[@/(r by —@ML ®

We now introduce the AAG that is designed to generate a
homogeneous magnetic field and obey Eq. (8) and is given
by

A= —
ajap sin“(a; — )

2dp [(rxfl)xfz_’_(rxfz)xi’l}
q+1 q ’
)]

where o; = Arg 7; and p € Z mod g(gq + 1).

The AAG is also useful in other contexts. For example,
if one is interested in solving the Hofstadter problem [20]
with high-flux resolution, it is obtained by considering a
rectangular lattice of size ¢ x (¢ + 1) and choosing an AAG
A(r) =20yp(-L- ;—‘) with p=1,2,...,q(g + 1). The flux

q+1’°
per unit cell is then qz(jj_’;), and thus the flux through the
entire 2D system is 2®gp. In the standard procedure using
the Landau gauge, the flux through the entire 2D area can
only take values from a narrow and sparse range 29, pg with

p=12,...,9+ 1.

VI. ELECTRONIC BAND STRUCTURE OF A
VORTEX LATTICE

We now elucidate the quasiparticle energy dispersion for
the pertinent BAG Hamiltonian, which is depicted in Fig. 2.
Consider a vortex lattice made of Ny x N, MUCs withg; X ¢
atomic sites in each cell, so in total, the system consists of
L, x L, sites (L; = N;q;). The Hamiltonian of the vortex
lattice in the BAG representation is written as H = VU Hgyo WV,
where Hpqg is the Hamiltonian density. For s-wave supercon-
ductors, ¥ = (Y, llf;)T where ¥, withs € {1, }}isan L{L,
component spinor of spin s fermion annihilation operators. For
p-wave superconductors, the index s indicates particle and hole
subspaces.

Next, we introduce the discrete translation operators along
the two lattice directions i = 1, 2,

Ti:Yrs — Y to)mod Niz.s» (10)

which satisfy [T, T>] = 0 and [Hpqg, 7;] = 0. Clearly, the
eigenvalues of 7; are exp (i27n;/N;) withn; =1,2,..., N;.

0.0 : . ;
0 2 4 6
Coherence length, &
3.5
3.0
2.5

Wave vector, k

FIG. 2. (Top) Quasiparticle bands as a function of coherence
length £ for a pinned vortex lattice in a p-wave superconductor.
The magnetic unit cell contains 10 x 11 sites and two vortices that
are pinned on its diagonal, partitioning it in a ratio of 1:2:1. We
taket = |A| = u = 1. (Bottom) The quasiparticle band structure for
& =2.5. We observe Landau levels at high energies and Caroli—de
Gennes—Matricon states below the gap, including the band generated
from zero-mode tunneling [18].

The Bloch theorem is employed by introducing g; x g, sub-
lattice wave functions,

Ors(r) = \/ﬁ XR:exp(ik “RB)IR+r,s), (11

where R = R,,, ,,, = m;T| + m,7, denotes the positions of
the MUCs and k =k, », = 7725 %1 + 32 #5. The Hamil-
tonian within a given sublattice is defined as

Hy(r,s;1r',s") = (ks (r)| Hpaglgr,s (r')). (12)

In this notation, the particle-hole symmetry of each block takes
the form X1 H*, Xy = —Hj with 3| = 01 ® 1,,4,. The block
Hj_ corresponds to a single MUC with PBCs. Technically, Hy
is obtained from Hj just by varying the boundary conditions

104511-3
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x10~2

[ = [N}
(e ot o
Coherence length, &

ot

FIG. 3. Average anomalous charge response c,, vs chemical
potential p for different coherence lengths &. The p-wave super-
conductor has a magnetic unit cell of 40 x 41 sites t = |A| = 1. In
addition, we pinned two vortices on the magnetic unit cell diagonal,
partitioning it in a ratio of 1:2:1.

as follows:
Hoy(r,s;r +1;,5') = Ho(r,s;r + 7;,s")exp (—ik - 1;),

13)
for any r on the boundary of the MUC.

VII. THE ANOMALOUS CHARGE RESPONSE
FUNCTION c,,

In previous studies of bulk p-wave superconductors, it was
noted that ¢, is not quantized [13,21,22]. We now calculate ¢y,
in the presence of finite-size vortices and discover, remarkably,
that ¢y, contains a universal quantized contribution.

The anomalous charge response is exposed in the effective
action of a p-wave superconductor through the appearance of
a partial Chern-Simons (pCS) term [4,9],

Spes = ey / drdta,(V x a),, (14)

where a, = A, — 9,0/2, n € {t,x, y}, and the sign corre-
sponds to the superconductor chirality p, & ip,. Thus, in

Numerical

Analytical

analogy with the Streda formula [23], the following relation
holds [13]:

ap(r)
9B, |50

Cry(r) == , (15)

where p(r) = 8Ser/8a,(r) = (g 3, Vil sVr.slgs). lgs) is the
superconducting ground state and B, = (V x a), is homo-
geneous at the lattice sites. This formula relates the density
response to an infinitesimal external magnetic field. However,
any variation of the magnetic field imposes a change in the
superconducting phase in order to maintain periodicity of
the supercurrents. Thus, as we now explain, the physical
scenario here requires a modification of the Streda formula.
The minimal variation of the magnetic field is a single flux
quantum (over the entire system), leading to the nucleation
of two vortices. Similarly, when an opposite magnetic field is
applied, two antivortices are nucleated. Therefore, the deriva-
tive operation in the Streda formula for calculating density
response implies a simultaneous flip of magnetic field as well
as vortex chiralities. This is equivalent to a chirality flip of
the order parameter (from p, £ip, to p, Fip,). The above
procedure is also necessary as two opposite chirality states
admit roughly the same spectrum so that the density response
can be considered as a small perturbation.

With this insight in mind, it is now possible to use Eq. (15)
and numerically calculate the spatial average of c.,(r) as
a function of u as shown in Fig. 3. The results are then
compared with the analytical expression of cy, from the
effective action governing the low-energy dynamics of the
p-wave superconductor [13,21,22].

It is found that the two predictions overlap in the trivial
phases except that the numerics predict a slight dependence
on £ but not on |A| as shown in Fig. 4. Moreover, in all
phases, ¢y, does not depend on the number of MUCs that
form the vortex lattice. Hence, ¢, can be calculated from a
single MUC corresponding to k = 0. Another property of c,,
is that its average value within the MUC depends only slightly
on its dimensions (as long as the vortices are well separated).
Thus, one may expect to obtain ¢y, for B, = 0 by probing the

s

N
L | |
N

4 0 4 8

J 8
\

2 —4 0

n
v
h

Difference
x 1072
4
| .’ 2
0 &
.’ —2
| —4

8 12 —4

FIG. 4. Average anomalous charge response c,, vs chemical potential ;1 and order parameter |A| for a p-wave superconductor with a
magnetic unit cell of 40 x 41 sites t = 1 and & = 2.5. The modified Streda formula (Numerical) is compared with the prediction of the
effective low-energy theory of the p-wave superconductor (Analytical). In addition, we pinned two vortices on the magnetic unit-cell diagonal,

partitioning it in a ratio of 1:2:1.
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Vortices —— Bulk e Field Theory

x10~2

FIG. 5. Average anomalous charge response c, vs chemical
potential u for a planar p-wave superconductor. The magnetic unit-
cell average of cy, is crudely separated into contributions from the
vortices and contributions from the bulk. For comparison, we also
present the field-theory prediction of c,,. Here t = |A| =1 and
& =2.5. In addition, the magnetic unit cell contains 40 x 41 sites
and two vortices that are pinned on its diagonal, partitioning it in a
ratio of 1:2:1.

density response of a small piece of the superconductor with
PBCs for the application of minimal magnetic flux ® = h/e
and a compensating vortex pair (placed arbitrarily within the
superconductor). This is indeed what we observe, and the result
matches extremely well with the field-theoretical prediction
in the trivial phase. Remarkably, in the topological phases
(0 < u < 8) there is a sizable discrepancy between our predic-
tions and those based on field theory. Since the charge accumu-
lated at the vortex core (referred to as vortex charging) depends
on the angular momentum of the Cooper pairs, it is determined
by an interplay among the superconductor chirality, the vor-
ticity, and the quantum phase [24]. We now show that this
discrepancy can indeed be traced to a universal vortex charging
effect.

To decipher the origin of c.,, we perform two kinds of
spatial and spectral cuts. First, we crudely separate the vortex
cores at distances r < & from the bulk and average c,, in each
region independently to find their respective contributions; in
the bulk, both theories yield similar results, whereas at the
cores, the numerical results expose steps of :i:é as shown
in Fig. 5. Second, we separate the charge in the vortices into
contributions of each Bogoliubov quasiparticle and take into
account those within the energy gap AQcore = [, ¥ Apr
with g, = %Zo«quumﬁ — |uy.c|?). We then find that
the most significant contribution to c., arises from the

Caroli—-de Gennes—Matricon states [25]. This demonstrates
that the universal contribution to ¢y, arises from the vortex
core and, specifically, from vortex bound states. On the other
hand, within the field-theory formalism, the vortices are treated
as point singularities, which may explain the discrepancy.
Although it was observed in Ref. [24] that vortices with
opposite vorticities accumulate different charges, here we show
that the relative accumulated charge for opposite vorticities
is a universal quantity, which appears to be proportional to
the Chern number of the superconductor. For consistency, we
checked that s-wave and d,»_,>-wave superconductors have
vanishing anomalous charge responses.

VIII. SUMMARY

In this paper, the nature of the PKE and the order param-
eter in the p £ ip superconductor Sr,RuQj is analyzed. A
smooth gauge is introduced, that can be used in conjunction
with Bloch’s theorem to diagonalize BdG Hamiltonians for
infinite superconductors in various periodic vortex states. The
dispersion of quasiparticle energies for such vortex states with a
finite vortex core size is calculated beyond previous numerical
studies, and the occurrence of midgap states is demonstrated
as the size of the core is increased.

Employing the same diagonalization algorithm, and modi-
fying the Streda formula, the anomalous charge response cyy
is calculated in the absence of vortices. The structure of cyy
is then used to identify the quantum phases of the pertinent
systems. Our results indicate that in p-wave superconductors
subjected to PBCs, cy, is calculable by their response to an
applied weak magnetic field and the nucleation of a vortex pair.
On the other hand, the average value of c,, within the bulk is
only weakly affected by the size of the vortices’ cores or their
positions in the MUC. It is then reasonable to perceive that the
discrepancy with results based on the field-theory approach to
p-wave superconductors is attributed to vortex charging, which
occurs only in vortices with finite core radii.

Finally, it is worth expressing our hope that the AAG
introduced here and the ensuing diagonalization algorithm
will serve as useful tools in the study of similar systems, such
as the Hofstadter butterfly in the presence of disorder [20].
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Chapter 3

Summary and discussion

In this dissertation we derived the effective action of a chiral p-wave superconductor. In our theory
the entire vortex contribution is accounted for by gauge fields, in contrast to previous works that
used a phenomenological description[51, 50]. In addition, we explicitly evaluated the Abelian
part of the exchange matrix of vortices in the 2D chiral spinless p-wave superconductor. We also
introduced innovative ways to measure and control solid-state Majorana fermions. Finally, we
considered the effect of the vortices on the electromagnetic response of the system, discovering
that, when the vortices possess a finite core, the formation of CdGM states and sub-gap bands
induced by tunneling between bulk vortices plays an important role. This discovery is highly
relevant for modeling and implementing quantum information protocols whose reliability can be

examined under various situations, for example, in the presence of disorder and impurities.

Effective theory of vortices in two-dimensional spinless chiral p-wave superfluids. An effective
action depicting the dynamics of vortices in a superfluid was derived from a microscopic theory.
More importantly, we demonstrated how to produce the missing CS term, which describes the
Abelian part of the statistics of the vortices, in the action. Moreover, this model enables us to
predict the conditions under which the Abelian phase will deviate from its universal value. We

found that the exchange phase is universal in the chiral p-wave superconductor when screening
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is present and the distance between vortices is much greater than both the coherence and the
penetration lengths, although substantial non-universal deviations occur for a neutral superfluid.
However, the non-Abelian sector, attributed to the zero-modes, is missing from the model and
further work is needed to elaborate its origin.

Signatures of the topological spin of Josephson vortices in topological superconductors. We
considered a setup consisting of a Josephson vortex trapped in an annular topological supercondut-
ing junction, which encloses both an electrical charge and magnetic flux. The vortex was driven into
a persistent motion through an Aharonov-Casher effect. The dynamics of the topological Josephson
vortex were governed by a modified Sine-Gordon Hamiltonian, where the regular bosonic degrees
of freedom couple with the low lying Majorana fermions. In the limit of vanishing tunneling across
the junction, we analyzed the difference in momentum between the inner and outer edges, as the
boundary conditions are exchanged between periodic and anti-periodic as depicted in Fig.(3.1).
We found that the ground-state contribution to the momentum difference is +27 % %, where % is
the topological spin of the Josephson vortex. Moreover, the universal phase depends solely on the
parity of the number of vortices enclosed by the junction. This phase is 27 times the topological
spin of the Josephson vortex and is proportional to the Chern number. We proceeded by showing
that our results hold true even when tunneling occurs across the junction.

The energy spectrum of the Josephson vortex, in the presence of an externally-induced Aharonov
Casher charge Q and N vortices within the central region, was obtained. It revealed that persistent
motion of the topological Josephson vortex can be manipulated by two knobs, Q and N mod 2.
In contrast, a non-topological Josephson vortex remains unaffected by N. Since both the velocity
of the persisting soliton and the voltage across the junction are proportional to the gradient of the
energy, V o v, oc dpE, the topological spin can be measured through its effect on the junction’s
voltage characteristics. We note that our platform and the topological spin, in particular, can be
exploited to form the sought-after g magic phase gate, necessary to complete a set of universal
quantum gates.

How vortex bound states affect the Hall conductivity of a chiral p + ip superconductor. We
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presented a systematic way to construct analytically the phase of a complex order parameter for
any spatial configuration of vortex defects within a 2D magnetic unit cell with periodic boundary
conditions. This order parameter is accompanied by a gauge for the vector potential, allowing
access to the highest resolution of its corresponding magnetic field. Since both the order parameter
and hopping amplitudes are periodic at lattice sites, we applied Bloch’s theorem in order to perform
an exact diagonalization of an infinite p-wave superconductor in various vortex states. Thus, we
accessed the dispersion of quasi-particle states and studied the formation of Caroli-de Gennes-
Matricon states and sub-gap bands induced by tunneling between vortices.

In addition, based on our field theory we generalized the Streda formula to the case of p-wave
chiral superconductors. Then, we used the Streda formula to calculate the anomalous charge
response, ¢, at zero magnetic field and zero vorticity. Due to the periodic boundary conditions the
superconductor was probed by the minimal magnetic flux,® = +h/e and a compensating vortex
pair (placed arbitrarily within the superconductor). In the topological phase (0 < u < 8) we found
that the results of the Streda formula differ from those predicted by the field theory. The discrepancy
was traced to the accumulated charge inside the vortices core. Moreover, our study revealed that

the formation of CdGM states plays an important role in the charge accumulation process.

Figure 3.1: Topological annular Josephson junction. The boundary conditions of the Majorana

edge states depend on the parity of the vortices in the inner plate of the junction.

39



An accurate estimation of ¢y, is necessary for determining whether the measurements of the
Kerr angle in SrpRuO4 provide evidence for triplet, odd-parity pairing, and chiral order. However,
a more realistic lattice model should be used to account for the superconductor multibands if a

quantitative comparison is to be made.

40



Bibliography

[1] A.Y. Kitaev. Fault-tolerant quantum computation by anyons. Ann. Phys., 303:2-30, January
2003.

[2] Michael Stone and Rahul Roy. Edge modes, edge currents, and gauge invariance in p,+ ipy

superfluids and superconductors. Phys. Rev. B, 69(18):184511-184511, 2004.

[3] T. Senthil, J. B. Marston, and M. P. A. Fisher. Spin quantum Hall effect in unconventional
superconductors. Phys. Rev. B, 60:4245-4254, August 1999.

[4] Nicholas Read and Dmitry Green. Paired states of fermions in two dimensions with breaking
of parity and time-reversal symmetries and the fractional quantum hall effect. Phys. Rev. B,

61(15):10267, 2000.

[5] Y. Imai, K. Wakabayashi, and M. Sigrist. Thermal Hall conductivity and topological transition
in a chiral p -wave superconductor for SryRuQOy4. Phys. Rev. B, 93(2):024510, January 2016.

[6] A.J. Leggett. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys.,
47:331-414, April 1975.

[7] P. Bonderson, L. Fidkowski, M. Freedman, and K. Walker. Twisted Interferometry: the

topological perspective. ArXiv e-prints, January 2016.

[8] Torsten Karzig, Yuval Oreg, Gil Refael, and Michael H. Freedman. Universal geometric path

to a robust majorana magic gate. Phys. Rev. X, 6:031019, Aug 2016.

41



[9] Eytan Grosfeld and Ady Stern. Observing majorana bound states of josephson vortices in

topological superconductors. Proc. Natl. Acad. Sci., 108(29):11810-11814, 2011.

[10] Michael Freedman, Alexei Kitaev, Michael Larsen, and Zhenghan Wang. Topological quan-
tum computation. Bull. Amer. Math. Soc., 40(1):31-38, 2003.

[11] M. W. Haverkort, I. S. Elfimov, L. H. Tjeng, G. A. Sawatzky, and A. Damascelli. Strong
spin-orbit coupling effects on the fermi surface of srpruos and srprhos. Phys. Rev. Lett.,

101:026406, Jul 2008.

[12] Emil J Rozbicki, James F Annett, Jean-René Souquet, and Andrew P Mackenzie. Spin—
orbit coupling and k-dependent zeeman splitting in strontium ruthenate. Journal of Physics:

Condensed Matter, 23(9):094201, 2011.

[13] Catherine Kallin and John Berlinsky. Chiral superconductors. Reports on Progress in Physics,

79(5):054502, 2016.

[14] RL Willett. The quantum hall effect at 5/2 filling factor. Reports on Progress in Physics,
76(7):076501, 2013.

[15] Kiryl Pakrouski, Michael R Peterson, Thierry Jolicoeur, Vito W Scarola, Chetan Nayak, and
Matthias Troyer. Phase diagram of the v = 5/2 fractional quantum hall effect: Effects of
landau-level mixing and nonzero width. Physical Review X, 5(2):021004, 2015.

[16] Mitali Banerjee, Moty Heiblum, Amir Rosenblatt, Yuval Oreg, Dima E Feldman, Ady Stern,

and Vladimir Umansky. Observed quantization of anyonic heat flow. Nature, 545(7652):75,
2017.

[17] Mitali Banerjee, Moty Heiblum, Vladimir Umansky, Dima E Feldman, Yuval Oreg, and Ady
Stern. Observation of half-integer thermal hall conductance. arXiv preprint arXiv:1710.00492,
2017.

42



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Liang Fu and C. L. Kane. Superconducting proximity effect and majorana fermions at the

surface of a topological insulator. Phys. Rev. Lett., 100:096407, Mar 2008.

Liang Fu and C. L. Kane. Josephson current and noise at a superconductor/quantum-spin-

hall-insulator/superconductor junction. Phys. Rev. B, 79:161408, Apr 2009.

G. Koren, T. Kirzhner, E. Lahoud, K. B. Chashka, and A. Kanigel. Proximity-induced
superconductivity in topological Bi; Te,Se and BirSes films: Robust zero-energy bound state

possibly due to Majorana fermions. Phys. Rev. B, 84(22):224521, December 2011.

B. Sacépé, J. B. Oostinga, J. Li, A. Ubaldini, N. J. G. Couto, E. Giannini, and A. F. Morpurgo.
Gate-tuned normal and superconducting transport at the surface of a topological insulator.

Nature Communications, 2:575, December 2011.

F. Qu, F. Yang, J. Shen, Y. Ding, J. Chen, Z. Ji, G. Liu, J. Fan, X. Jing, C. Yang, and L. Lu.
Strong Superconducting Proximity Effect in Pb-Bi, Tes Hybrid Structures. Scientific Reports,
2:339, March 2012.

J. R. Williams, A. J. Bestwick, P. Gallagher, S. S. Hong, Y. Cui, A. S. Bleich, J. G. Ana-
lytis, I. R. Fisher, and D. Goldhaber-Gordon. Unconventional Josephson Effect in Hybrid

Superconductor-Topological Insulator Devices. Physical Review Letters, 109(5):056803, Au-
gust 2012.

S. Cho, B. Dellabetta, A. Yang, J. Schneeloch, Z. Xu, T. Valla, G. Gu, M. J. Gilbert, and
N. Mason. Symmetry protected Josephson supercurrents in three-dimensional topological

insulators. Nature Communications, 4:1689, April 2013.

L. Zhao, H. Deng, 1. Korzhovska, J. Secor, M. Begliarbekov, Z. Chen, E. Andrade, E. Rosen-
thal, A. Pasupathy, V. Oganesyan, and L. Krusin-Elbaum. Emergent surface superconductivity

of nanosized Dirac puddles in a topological insulator. ArXiv e-prints, August 2014.

43



[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

S.-Y. Xu, N. Alidoust, I. Belopolski, A. Richardella, C. Liu, M. Neupane, G. Bian, S.-H.
Huang, R. Sankar, C. Fang, B. Dellabetta, W. Dai, Q. Li, M. J. Gilbert, F. Chou, N. Samarth,
and M. Z. Hasan. Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological

superconductor. Nature Physics, 10:943-950, December 2014.

J.-P. Xu, C. Liu, M.-X. Wang, J. Ge, Z.-L. Liu, X. Yang, Y. Chen, Y. Liu, Z.-A. Xu, C.-L. Gao,
D. Qian, F.-C. Zhang, and J.-F. Jia. Artificial Topological Superconductor by the Proximity
Effect. Physical Review Letters, 112(21):217001, May 2014.

Chuanwei Zhang, Sumanta Tewari, Roman M. Lutchyn, and S. Das Sarma. p, +ip, superfluid

from s-wave interactions of fermionic cold atoms. Phys. Rev. Lett., 101:160401, Oct 2008.

Satoshi Fujimoto. Topological order and non-abelian statistics in noncentrosymmetric s-wave

superconductors. Phys. Rev. B, 77:220501, Jun 2008.

Masatoshi Sato, Yoshiro Takahashi, and Satoshi Fujimoto. Non-abelian topological order in

s-wave superfluids of ultracold fermionic atoms. Phys. Rev. Lett., 103:020401, Jul 2009.

J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma. Generic New Platform for Topo-
logical Quantum Computation Using Semiconductor Heterostructures. Phys. Rev. Lett.,

104(4):040502, January 2010.

V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven.
Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices.

Science, 336(6084):1003-1007, 2012.

Stevan Nadj-Perge, Ilya K. Drozdov, Jian Li, Hua Chen, Sangjun Jeon, Jungpil Seo, Allan H.
MacDonald, B. Andrei Bernevig, and Ali Yazdani. Observation of majorana fermions in

ferromagnetic atomic chains on a superconductor. Science, 346(6209):602—607, 2014.

44



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Jin-Peng Xu, Mei-Xiao Wang, Zhi Long Liu, Jian-Feng Ge, Xiaojun Yang, Canhua Liu,
Zhu An Xu, Dandan Guan, Chun Lei Gao, Dong Qian, Ying Liu, Qiang-Hua Wang, Fu-
Chun Zhang, Qi-Kun Xue, and Jin-Feng Jia. Experimental detection of a majorana mode
in the core of a magnetic vortex inside a topological insulator-superconductor bi,tes/nbse;

heterostructure. Phys. Rev. Lett., 114:017001, Jan 2015.

S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and Ali Yazdani. Proposal for realizing majorana

fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B, 88:020407, Jul 2013.

Stevan Nadj-Perge, Ilya K Drozdov, Jian Li, Hua Chen, Sangjun Jeon, Jungpil Seo, Allan H
MacDonald, B Andrei Bernevig, and Ali Yazdani. Observation of majorana fermions in

ferromagnetic atomic chains on a superconductor. Science, 346(6209):602-607, 2014.

Jian Li, Titus Neupert, Zhijun Wang, AH MacDonald, A Yazdani, and B Andrei Bernevig.
Two-dimensional chiral topological superconductivity in shiba lattices. Nature communica-

tions, 7:12297, 2016.

Dmitri A Ivanov. Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconduc-

tors. Phys. Rev. Lett., 86:268-271, January 2001.

Sergey Bravyi. Universal quantum computation with the v = 5/2 fractional quantum hall

state. Phys. Rev. A, 73:042313, Apr 2006.

Martin Leijnse and Karsten Flensberg. Introduction to topological superconductivity and

majorana fermions. Semiconductor Science and Technology, 27(12):124003, 2012.

P. Bonderson, S. Das Sarma, M. Freedman, and C. Nayak. A Blueprint for a Topologically
Fault-tolerant Quantum Computer. Preprint in http://arxiv.org/abs/1003.2856, March 2010.

Parsa Bonderson, Lukasz Fidkowski, Michael Freedman, and Kevin Walker. Twisted interfer-

ometry. Preprint in http://arxiv.org/abs/1306.2379, 2013.

45



[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

G. E. Volovik. An analog of the quantum Hall effect in a superfluid 3He film.
J. Exp. Theor. Phys., 94:123-1371, September 1988.

G. E. Volovik. Peculiarities in the dynamics of superfluid 3He-A: analog of chiral anomaly

and of zero charge. J. Exp. Theor. Phys., 65:1193—-1201, June 1987.

J. Goryo. Vortex with fractional quantum numbers in a chiral p-wave superconductor.

Phys. Rev. B, 61:4222-4229, February 2000.

R. M. Lutchyn, P. Nagornykh, and V. M. Yakovenko. Gauge-invariant electromagnetic re-
sponse of a chiral p,+ip, superconductor. Phys. Rev. B, 77(14):144516, April 2008.

R. Roy and C. Kallin. Collective modes and electromagnetic response of a chiral supercon-

ductor. Phys. Rev. B, 77(17):174513, May 2008.

G. Moore and N. Read. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B,
360:362-396, August 1991.

Paul Fendley, Matthew Fisher, and Chetan Nayak. Edge states and tunneling of non-abelian
quasiparticles in the v = 5/2 quantum hall state and p + ip superconductors. Phys. Rev. B,

75:045317, Jan 2007.

Eduardo Fradkin, Chetan Nayak, Alexei Tsvelik, and Frank Wilczek. A chern-simons effective
field theory for the pfaffian quantum hall state. Nucl. Phys. B, 516(3):704-718, 1998.

Thors Hans Hansson, Thomas Kvorning, and V Parameswaran Nair. An effective field theory

for the spinless p-wave superconductor. Preprint in http://arxiv.org/abs/1310.8284, 2013.

D. Ariad, B. Seradjeh, and E. Grosfeld. On the effective theory of vortices in two-dimensional

spinless chiral p-wave superfluid. Preprint in http://arxiv.org/abs/1407.2553, July 2014.

Earl T Campbell, Barbara M Terhal, and Christophe Vuillot. Roads towards fault-tolerant

universal quantum computation. Nature, 549(7671):172, 2017.

46



[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Dimitri Roditchev, Christophe Brun, Lise Serrier-Garcia, Juan Carlos Cuevas, Vagner Hen-
rique Loiola Bessa, Milorad Vlado MiloSevi¢, Francois Debontridder, Vasily Stolyarov, and

Tristan Cren. Direct observation of josephson vortex cores. Nature Physics, 11(4):332, 2015.

Kirill G. Fedorov, Anastasia V. Shcherbakova, Michael J. Wolf, Detlef Beckmann, and
Alexey V. Ustinov. Fluxon readout of a superconducting qubit. Phys. Rev. Lett., 112:160502,
Apr 2014.

W. J. Elion, J. J. Wachters, L. L. Sohn, and J. E. Mooij. Observation of the aharonov-casher

effect for vortices in josephson-junction arrays. Phys. Rev. Lett., 71:2311-2314, Oct 1993.

Jonas Wiedenmann, Erwann Bocquillon, Russell S Deacon, Simon Hartinger, Oliver Her-
rmann, Teun M Klapwijk, Luis Maier, Christopher Ames, Christoph Briine, Charles Gould,
et al. 4m-periodic josephson supercurrent in hgte-based topological josephson junctions.

Nature communications, 7:10303, 2016.

Falko Pientka, Anna Keselman, Erez Berg, Amir Yacoby, Ady Stern, and Bertrand I. Halperin.
Topological superconductivity in a planar josephson junction. Phys. Rev. X, 7:021032, May
2017.

Daniel Ariad and Eytan Grosfeld. Signatures of the topological spin of josephson vortices in

topological superconductors. Phys. Rev. B, 95:161401, Apr 2017.

Y. E. Kraus and A. Stern. Majorana fermions on a disordered triangular lattice. New Journal

of Physics, 13(10):105006, October 2011.

M. A. Silaev. Majorana fermions on the abrikosov flux lattice in a p, + ip, superconductor.

Phys. Rev. B, 88:064514, Aug 2013.

J. Zhou, Y.-J. Wu, R.-W. Li, J. He, and S.-P. Kou. Hierarchical topological superconductor -
A Majorana vortex lattice model. EPL (Europhysics Letters), 102:47005, May 2013.

47



[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

T. Liu and M. Franz. Electronic structure of topological superconductors in the presence of a

vortex lattice. Phys. Rev. B, 92(13):134519, October 2015.

J. M. Murray and O. Vafek. Majorana bands, Berry curvature, and thermal Hall conductivity
in the vortex state of a chiral p -wave superconductor. Phys. Rev. B, 92(13):134520, October
2015.

R. S. Akzyanov and A. L. Rakhmanov. Majorana states in 2d topological superconductor
hosting abrikosov vortices. Journal of Superconductivity and Novel Magnetism, 30(11):3071—
3078, Nov 2017.

N. Nakai, M. Takigawa, M. Ichioka, and K. Machida. Vortex structure in p-wave supercon-
ductors based on tight-binding model. Physica C Superconductivity, 367:50-53, February
2002.

M. Takigawa, M. Ichioka, K. Machida, and M. Sigrist. Vortex structure in chiral p-wave
superconductors. Phys. Rev. B, 65(1):014508, January 2002.

G. Moller, N. R. Cooper, and V. Gurarie. Structure and consequences of vortex-core states in

p-wave superfluids. Phys. Rev. B, 83(1):014513, January 2011.

Jiang Zhou, Shi-Zhu Wang, Ya-Jie Wu, Rong-Wu Li, and Su-Peng Kou. Topological mid-
gap states of topological superconductor with vortex square superlattice. Physics Letters A,

378(34):2576 — 2581, 2014.

Nobuhiko Hayashi, Masanori Ichioka, and Kazushige Machida. Relation between vortex core
charge and vortex bound states. Journal of the Physical Society of Japan, 67(10):3368-3371,
1998.

Masashige Matsumoto and Rolf Heeb. Vortex charging effect in a chiral p, + ip,-wave

superconductor. Phys. Rev. B, 65:014504, Nov 2001.

48



[72] Yusuke Masaki and Yusuke Kato. Charged and uncharged vortices in quasiclassical theory.

arXiv preprint arXiv:1707.01011, 2017.

[73] Jun Goryo. Impurity-induced polar kerr effect in a chiral p-wave superconductor. Phys. Rev.

B, 78:060501, Aug 2008.

[74] Roman M. Lutchyn, Pavel Nagornykh, and Victor M. Yakovenko. Frequency and temperature
dependence of the anomalous ac hall conductivity in a chiral p, + ip, superconductor with

impurities. Phys. Rev. B, 80:104508, Sep 2009.

[75] Edward Taylor and Catherine Kallin. Intrinsic hall effect in a multiband chiral superconductor

in the absence of an external magnetic field. Phys. Rev. Lett., 108:157001, Apr 2012.

[76] Martin Gradhand, Karol I. Wysokinski, James F. Annett, and Balazs L. Gyorffy. Kerr rotation

in the unconventional superconductor sroruos. Phys. Rev. B, 88:094504, Sep 2013.

[77] M. Gradhand, I. Eremin, and J. Knolle. Polar kerr effect from a time-reversal symmetry

breaking unidirectional charge density wave. Phys. Rev. B, 91:060512, Feb 2015.

[78] Ady Stern, Felix von Oppen, and Eros Mariani. Geometric phases and quantum entanglement

as building blocks for non-abelian quasiparticle statistics. Phys. Rev. B, 70:205338, Nov 2004.

[79] Chetan Nayak, Steven H Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma.

Non-abelian anyons and topological quantum computation. Rev. Mod. Phys., 80(3):1083,
2008.

[80] J. Alicea. New directions in the pursuit of Majorana fermions in solid state systems.

Rep. Prog. Phys., 75(7):076501, July 2012.

[81] Alexander Altland and Ben D Simons. Condensed matter field theory. Cambridge University
Press, 2010.

49



[82] M. Stone. The Physics of Quantum Fields. Graduate Texts in Contemporary Physics. Springer
New York, 2012.

[83] Hagen Kleinert. Collective quantum fields. Fortschritte der Physik, 26(11-12):565-671,
1978.

[84] P. Ring and P. Schuck. The Nuclear Many-Body Problem. Physics and astronomy online
library. Springer, 2004.

[85] D. J. Thouless. Stability conditions and nuclear rotations in the Hartree-Fock theory.

Nucl. Phys. A, 21:225-232, December 1960.

[86] N.Read. Non-abelian adiabatic statistics and hall viscosity in quantum hall states and p, +ip,

paired superfluids. Phys. Rev. B, 79:045308, Jan 2009.

50



Appendices

51



Appendix A

The effective action of a two-dimensional
chiral p-wave superconductor with

single-quantum vortices

1 Introduction

In a p-wave superconductor, the quasi-particles which exhibit non-Abelian statistics are flux /2/2e vortices [10, 1]. We
present the effective action of such a superconductor [2, 11] and show that when calculations are performed in a certain

gauge, they do produce a non-trivial Chern-Simons-type (CS) term.

The Bogoliubov—de Gennes Hamiltonian for a spinless p-wave superconductor is [13, 12]

—A)? 1 .
7’[=/Rdl‘/R;2dx w;,t((pzm) _IJ_AO)wx,z"'z [lpx,t {A,Px+il7y}l//x,r+h-c~] > (D

where p = —iV is the momentum, ¢, ¢ are the electron field operators, A is the order parameter and may depend on

space and time, A(r) is the electromagnetic vector potential. Here and in the following we take ¢ = 7i = 1. The action
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functional corresponding the Hamiltonian eq. (1) is
S (e bes) = [ dt [ dx s () by = H (B 0] @

where the fermion operators appearing in Eq. (1), ;{/;’, and ., were replaced by Grassmann fields, which we denote
by ¢, and ¢y, respectively. The partition function of the system is given by the sum over all possible Grassmann

field configurations, weighted by the action functional of the fields -

z- / DT i) Se15.) 3)

The action is quadratic in the Grassmann fields, and assisted by the Nambu notation the partition function can be

integrated out straightforwardly. We use Nambu notation

Pt _ _
Nx,t = _x and Nx,t = ( ¢x,t7 ¢x,t ) . (4)
Ox,t

Writing the action in terms of Nambu spinors gives

LT ) o
S (a0 Mxt) = E/dt /R2 dx [fx,G "nx. |, where 7' =i, - H )

Explicitly, The inverse Green matrix in the presence of electromagnetic fields is

. 1 2 ]
g—‘ _ id; + Ay — m(—p + A"+ u - {A,Px - lI’y} A= @eié)(x,t). 6)

—{Z,px+ipy} i — Ao+ 5 (p + AP — 1t 2
and in terms of the Pauli matrices, The inverse Green matrix with electromagnetic fields is

(p —73A)?

g_l =iat—73( m

_ﬂ_AO)_Tl{Ast}_TZ{A’py} (7)

where 7; are the Pauli matrices and the order parameter is A = %e”-*a(x” ).

The functional integration over a Gaussian of real Grassmann fields is
rn _ 1 -
<= /D(ﬁx,t’ Tlx,t)etswx't’nx’t) = l_[ Pt (gxi) = exp [ETr log (gxlt)] ' ®
x,t

where TrA stands for 3. ;(x,t|trA|x,t) and tr is the trace over the 2 X 2 Nambu space [6]. The full derivation of the

integral’s solution is given in Appendix A.
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2 The gradient expansion of the effective action for a 2D p-wave supercon-
ductor

The partition function is invariant under a similarity transformation of the inverse Green function that keeps the modu-
lus of the Jacobian unity. Any transformation should keep the particle-hole symmetry, which follows from the fact that
{&,H} = 0 where E = 7K with K being complex conjugation operator and 7 being Pauli matrix in Nambu space.
In addition, the transformation is required to be single-valued in order to avoid the need to introduce branch cuts for
the Grassmann fields. Also, we would like that the transformation of G~! produce only terms with powers of the phase
function 6(x, t), in order simplify the gradient expansion of the effective action. Thus, the transformation, U, would

have the following properties:

1. To maintain particle-hole symmetry, the right spinor is the transpose conjugate of the left spinor,
_ —177
U’T]x’t=[77x’t’U ] .
2. For particle-hole symmetry, the first element of the spinor is the conjugate of the second element,
¥ =)'

3. A unity modulus Jacobian implies that | det(U) |= 1, so U is unitary matrix which have the general form

U= eim—ﬁr] +yT2+07T3

4. The transformation should eliminate from the off-diagonal elements of G the dependence on the order parameter

field, 6(t, x), from the phase function.
5. The transformation should be single-valued.

The following transformation, which is built from a product of a discrete and continues transformations, fulfills the
requirements above:

U= 702 ©)

The first part is 1 = ¢?®*) where 7y is function that depends, in general, on space and time and gives 0 or . So the
spinors transform by the discrete transformation, ¢, — —¢y ;. The second part is exp [-iT36/2], where it should be
effectively evaluated as a power series for the exponential function, with ordinary powers replaced by matrix powers.

Under this transformation the spinor transforms by a continuous transformation, ¢, ; — ¢y, e i0x)/2

54



We renotate the Green function after the transformation as

o i0+ay—by— 5= (—p+a-bP+u  —A (px - ipy) — A(by —iby) w0
~A(py+ipy) = A(bo+iby) i —ag-bo+ ok (pra+ b’ -p

by = dyy and Ag = 2|A| (from hereby we omit the zero subscript).

where @ = A — 0x0, ayp = Ag— 30, b = dyv,
The derivation of the transformed Green’s matrix can be found in Appendix G.

The similarity transformation is actually a gauge transformation which leaves the Hamiltonain invariant but alter
the auxiliary fields (A, A) as A —s e'?A.
Rewriting the Green matrix in terms of Pauli matrices gives -

. 1
10,10 + (ag — boT3) T3 — 3 (~pT3+a—-bt3)’T3+ut3+ Ay (Py+bx)T1+ A0 (py + by) T

' =
Now we divide the expression into the vacuum inverse Green matrix plus corrections that depend on the fields -
2 2
+py {paxt +{py.ay}
G = gt - |, —A(px Ti+p, Tz)— —apry— 22T Ty ] 11
2m 2m
g(;[ X1
{pbi}+{py by} a; +a; —ayby — ayb, b + b3
- T3—A(be1+byT2)—boT()— T3 — T — T3
2m —_—— 2m m 2m
—_— Y
X3 X4
X2 Xs Xe X7
This allows us to write the effective action as -
1 1 1
~iS (a,a,b,bo) = —5Trlog (gg1 —x) = =5 Trlog(G;") = 3 Trlog (1 - Gox) ~ (12)

1 1
Const+ETr[EQO-E-§o~E+QO'X

(13)

The Green’s matrix is
- —iT00 — 8, T
- 2 2
oy +8 P

2 7 4
where g = (Apx, Apy, &p), & = f—m - i, T=(T1,T2,T3) X = ‘21 X; and E= Zl Xi-
i= i=
To derive the Green’s matrix we used the fact that every 2D matrix of the form A = iaty + bt + ¢T2 + d73 has an

s . —1 _ —iato+bti+ctr+dTs
inverse matrix A7 = — 552
This expansion into a series is called "the gradient expansion" since we assume that the electromagnetic fields and

the gradients of the order parameter are small [8, 11, 2].
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3 Evaluating the first order of the gradient expansion

We are interested in evaluating the trace of single current terms Goy;, so we start by examining the trace for the

combination Go(x; + X,) in order to study how it transforms to momentum space ' -

5 [ t]Go (xy + xa)| x,0) = %fﬁ’g’f(x,l)go (—Tsao -7 {’;;Z} —To‘%)}x, )=

%fﬁﬂﬂ&ﬂ@ﬂhwﬂth~mw—T@%Qa1F4&w—fﬁ%ﬂ&ﬁ=

(14)

1_1 dx,dt 1 . axbx+ayb
3 @ny [ G&in Golk, w) (—T3ao —To3,; 2k -a—-idca) - T‘”To) =

| 1 [dkdo, k- b
3G | “dq.ay Go (k. w) ((—T3ao+ — T0 5= )8q,008,0 — To ™5 )

where

oo

2
_TTOW T8k T 0 g2 A2p2 _ _k =
Gk = I ELT g R = kbt =g [ [ ax [

and we donate the transformed fields as a. = a(xq,+f) and b, = b(xq, =f). Also should be mentioned that in the

last step in Eq. (14) we used Fourier transform identities which are derived in Appendix B.
Thus, when evaluating the trace of terms in the effective action with the form tr ( / f’j; (x,t |§0Xi| X, t)), the trace
can always be transformed to momentum-frequency space, tr ( / ’fl”‘}?go (k, wn) x:(q, f, k)). Where currents that are

proportional to {p, a(x,t)}, ao(x, t) and a-b become proportional to 2k-a .. 64,00 ,0, a0+04,09r,0 and a..-b_ ,respectively.

Applying these rules to transform all the first order corrections in the action into the momentum-frequency space,

yields:
1 11 a,a_ by -b_
d — dk,dw + + _
E/dJ’C ulx tGox|x.1) = §(2n)3/dq,dftr (go(k,w)'fs (—a0+6q,06f,o+ St o )) =
; a.a-  by-b_ . a’(x,1)  b*(x,t
/3?”1 (—a0+5q,o5f,o+ St )zm/';’;; (—ao(x, t)+—§m )+—§m )) (15)

The corrections x4 and the second term in y; do not contribute to the first order of the gradient expansion since the
trace and the integration over frequency, w eliminated these terms. The corrections x,, x5 and x4 do not contribute

either, because, although they have the same form as x|, the fields are derivatives (of ). Thus, the Fourier transform

exp (ik-x) exp(-iwt)
2r

'The Fourier Transform convention that we follow is (x, t|k, w) = "
T
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over these terms is zero.

All that’s left is to evaluate the sum over k and w, meaning computing in = 1tr ((2 n 7 I Go(k, w)T3 e‘”»‘”). The
only elements which we need in order to preform the trace in the expression are the diagonal ones. The integration
over the momentum of the first (second) element is done by counting only poles in the upper (bottom) half-plane.
Thus, the elements were multiplied by an exponents which, due to convergence issues, forces us to choose the right
integration contour without altering the result. The sum over poles in the upper (bottom) half-plane may be interpreted

as summing over particles (holes).
The expression for the particles and holes can be written as

. —w +§k +
L= — k), = d inw 16
e = 53 o 00 : (2n)3 /R / R (1o

Where &, = 2 — = U, gk &2+ A?k? and n should be understood as density of particles.

Starting from summing over w yields

+00
1 -w—-¢ i -w—-¢ ;
Ky = — [ — 25 ¢9hy = Res [ ¢ 1] = 17
k) mi) —rrgroipt Y es((“w)u-w)e ) 17
—w-§ ; A=& i
li ) < inw _ in
Jm @+ ) A —w)¢ 20 ¢
and
+00
1 -w+€ _ —-w+€ _
- = o [ e = Res |t | = 18
(k) 2ni —a)2+g2—i77€ @ es((/l+a))(/l—a))e ) (18)
. -w+¢ _ A=& i
-1 “QND)— TS mine TS5 in
Jm @ = Do a—o)¢ 21 ¢

where A = ,[gi —in.

We can always write 1> = Ce'® with C = (g} +7?)!/? and ¢ = arctan(-n/g}). Since Im(2?) < 0, the phase ¢

must be in the region —7 < ¢ < 0. This implies that 1 = VCe'?/? lies in the forth quarter (and — A in the second quarter).
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Taking the trace and integrating over momentum gives -

. 1 ¢k m 3
n = limn,—n_=- /dkl— z—/dfl— - )z
n—0 2 2n)? Jre ’51% +2mA2(& + Q) 477711 VE2 +2mA% (€ + p)

A+ VA2 +2mA%(A +
TUAA + 20— \JA2 + 2mA2(A + p) + mAZ Tog |1 + mATA + 1) (19)
4r mA2

where A is some cut-off that depends on the nature of the system. It will become useful to introduce the equilibrium

electron density as a function of the momentum cut-off, Ag.

Ak
S dkk|1- Sk (20)

4 Jo J& +2ma2g + )

N

°
A

Figure 1: The contours of integration to be used in zero temperature calculations for particles (left) and hole (right).

4 The second order of the gradient expansion

We are interested in evaluating the trace of the second order of the gradient expansion. We start by examining the trace

for the combination Gox |G x in order to study how they transform to frequency-momentum space -

%/flﬁ?tf ((x0, f0]Gox 1Gox 1| x0, f0)) =

dxo,dio,dx1,d
i/ ;lg,dﬁ)),d’;fdf”tr(<xo,lo|§0|ko,wo><ko,wo|)(1|X1,t1><X1,t1|§0|k1,w1><k1,w1|)(1|X0,t0>)= 21

dx,dty,dx,dt +ilxg—x)(kg—k ) p+iltg—1))(w]-w))
i/ ji,df,,d;fdfltr(e )P Go(ko, wo) x1(X1, 11, ko)Go(k 1, wi) x1(Xo, to,kl))
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wWwT)— 8- T

- 1
where Go(k, w) = >— and x1(x,0,k) = —Toao(x,1) —To5— (2k - a(x,1) + idx,a(x, 1))
—-w? + g 2m

Continuing by integrating over the spatiotemporal coordinates yields:

1 1
Z“(W [t (o)t (ko = Ko o1 = ) G Gkt (ks = Koo = 1, 22)

where the correction x| (ko — k1, w, — wo, ko) = =130 (ko — k1, w1 — wp)
1
—%To (2k0~a (k() - kl,w1 - a)()) - (k() - k1)a (k() - kl,wl - (1)0)) = (23)
1
~T3a9 (ko — k1, w1 — wo) — ETo(k0+k1)a(ko—k1,w1 - wo)

ko+k

Next, we change the variables of the sum from ko, k1, wo and wy to k = =5, 9 = ko —k;, w = w and
f = w1 — wo, respectively. After the variables change, the contribution to the action takes the form
1 1 dk.dew q f q f
—tr| ——= : k+-,0-*% L, f. k k- 0o+ = -q,—f, k 24
4 r((27‘r)3/dq’dfgo 3 w ) x1(q, f.k)Go 3 w ) x1(=q,—f, k) (24)

f q _(W$§)70_gki% T 1
where go(w + Ev k+ 5) = 7 2 and Xl(q’ fv k) = _7'3“0(‘1’ f) - —T()k'a(q, f)
—(w—§)2+gk+l m
2

Generally speaking, when transforming terms of the form tr / ‘Zl’f (x,t | GoxiGo )(j| x, t) to the momentum-frequency
space, the expressions can be simplified by switching to symmetric and anti-symmetric variables by a special unitary
transformation. After the transformation the corrections that are proportional {p, a(x, 1)} and ao(x, t) become propor-
tional to 2k - a(q, f) and ao(q, f), respectively. Thus, the second order of the gradient expansion in terms of (2+1)

momentum-frequency vectors g = (¢, —qo) and k = (k, ko) can be expressed as

/ qodq k(. qo)7t ) A,(=¢. —qo) (25)

where 7rf: :{(q), the correlator? between the ¢ component of the field « and the v component of the field 4, is given by

11

ﬂf,‘{(Q) = 1 W

[ k(g Ditwe - Dizw). 26)
where the Einstein summation rule is applied with «, 4 = @, b, u, v = 0, 1, 2 and the currents j, and jj are

. ky . ky

Ja = (-3, —%‘TQ, -=10), Jjb = (70 %T3 + ATy, 213+ A1) (27)

As shown in Appendix G, there is no coupling between the 3-vector fields a = (a, ap) and b = (b, by). This statement

is based on the antisymmetry with respect to k of correlators integrand,

tr (Golk + D)ja0)Go(k = )jin(0)) = =tr (Go(—k + D)ju(—0Go(~k = Djo(=)) 8)
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The calculations can be further simplified by expanding the correlators up to the first order with respect to g. The
expansion of the effective action is only up to the second order of the fields a and b so there is no point to keep orders

higher than two in g. Explicitly, the expanded correlators are

1 1 ’ ’
W@ = 3 e +4 Ve [ [k (%(k + L) toGok - %)jr(k))] 29)

’

q’=0

5 Evaluating the zero order in g of the gradient expansion second order

Oy, . .
The zero order in g of correlator IT %" (g) in terms of Ql(co) = Go(k) is

Opy, o1 1 3 O st 120 ;
1@ = 3 G [ / AR (AT (30)
where
—Toko — 8 " T
GV = OB T 2 _ 2 NP and gy = (Aky, Aky, ) (31)
—ko + 8

and the currents j, and jj, are

Ja(k) = (=13, 810, ~%274) = (-3, -9, 8370, — Ok, 8370)

(32)
Jo(k) = (to, S5 + AT, 2213 + ATy) = (10,01, (g - 7). O (g - 7))

5.1 Intermezzo: The integration over k

Fortunately, the calculation of the correlators involves only two types of integrals over the frequency, kg. These

integrals are

2 2
w ) 0 w _ (33)

1 r w?
— [ 4w = Res|— )= lim 2
27 / Ca?+ 22 e ((a 0P+ w)? o2 80 A=)
m 2w . 20? _ _/1_2
ws-a\(A-w)?  (A-w)3| 4283

2 In order to evaluate the correlators we must take a trace over various products of the Pauli matrices and the identity matrix. The following

identities may ease the calculation:

tr (TiTkaTl) =20;j0k1 +20;10jk —206ik0j;, tr (TiTka) =€jk2i andtr (Ti‘rj) =20;j-
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and

1 1 7] 1
— | ———=dw = Res|—————,-2|= lim ——— = 34
2mi / (~w? + A2)2 @ e 1 - w)2 (A + w)? ) w2 B (1 - w)? (34)
y 2 1
im —— = —
w->-1 (A -w)? 423
with 1 = /g,% —in. The results of the integrations do not depend in which half-plane the arc contour lies. Thus,
without ambiguity we choose to take the arc in upper half-plane
y
> x
[ ]
A
Figure 2: The contour of integration which is used in the evaluation of dual current terms.
5.2 The correlator II,
| KoTo + 8k - T)T3(koTo + g - T)T3
Brtr Q(O)JOQ(O) 0\ _ 1 /// _
e 4 (27T)2 /// 4 (2n)3 R3 (—ké +g2)2
1 ///d3ktr (koto + &k - T)(koTo+ 84 -T) | _ 1 /// k ko+8k 8k _
3 2 - 3 2 =
4 (2r) R3 (—ké N g2) 2 (2n) R k2 re )
// - +gk gk i // e lite _ im1o 2mA2(<f+/1) _im
8 (2m)? JJge 1672 JJg2 g’ 42 Joy T E A 2mANE+ )2 An
(35)
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1 (ak 83)2(koto + g - T)?
o=t /// d3kt 01601 /// ) _
a 4 (271.)3 I g Ja g 4 (271.)3 R3 (_kg + g2)2
Now we use the identity

. O &V (kg+8°) in p @ 83)°(=¢* + &%)
tr [(ko‘ro +g- 7)2] = 2 2n)? /[/R3 - kg + g2) ~sr 2n)? //RZ —g =0
2(k3 + %)

(36)

M = 11 /// Brtr (g(O) 2(0) 2 ‘///' (0k2g3)2(k0‘r0 +g-1)? _
“ T 42r3 M 4 ) M= (—k% + g%)?
Now we use the identity

(6k283)2(k2 +8%) in (akzg%)Q( -g° +g%)
tr [(ko‘ro +g- T)Z] = =3 (2”)3 ///W (- kg + g2 T 8r Qn)? //RZ —g =0
2(kE +g%)

(37

1 1
0l _ 10 _ 3 ©) 0,01 _
=17 = - d’kt =
“ ¢ 42y /[/R3 r(g JaG ]“)
11 [// Pr i (koto + & - T)T3(koTo + & - T)(k,8370) | _
4@2n) S (—k2 +g2)?

[/ ri ( [-g’13+ (g - 1-)31'3(g . T)]ak1g3) _ Now we use the identity _0 38)
R2 g tr[(g-7)r3(g-7)] =

16 (27)2

%2 = 120

_11 3 © 00 :2) _

a Ha - 4(27‘()3 </]</'de ktr (g ]ag ]a) -
L. /// i 1o | KoTo+ & DT3(koTo + & - TN ugsTo) | _
4Q2n) S (—k§ + 8%)?

ﬂ . ( [-g%t3 + (g - —,-):-3(g . T)]6k2g3) _ Now we use the identity ~0 (39
x2 & tr[(g-7)7r3(g-1)] =0

16 (21)2
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11 , . 11 (koo + & - T)*(Ok, 83)(Ok, 83)
p_pu_l 3 Oi1p0p2) -1 3 | 2
N2 = = g [J[, oe(6"ii6 ) = s Lo tr( (k3 + g2

Now we use the identity

(k2 + 8%)(0k, 83)(0r, 83)
r[(koro + g - 7)] = 2(277)3 ///R K2+
2(kg + &%)
) 2 o o
t o //RZ Lk (g~ +¢ )(g;qgs)( 283) ~0 (40)

5.3 The correlator 11,

! i 1 1 (koTo + & - T)To(koTo + & - T)T0
noo - L 3 ©060);0) _ 2 3 0To ol(ko _
Y e )3/// dktr Q vG Jb) 4(2n)3ﬂ3d ktr( twe

k2 + g* i1 —g2 4 g2
3/// - 2:i 2‘//d2kg—:g:0
2(27‘() R3 2 8 (2n)? JJr2 g

+8
(41
1o 1o (k )9 2
. . +8:T)0,8 T
m2 =L /// Bkt 0:2.0:2) _ L /// Bkt 070 2 _
P =2 o (636 0) = ae Lk T e
:L;// Pk tr 8% (O, g - 7)* + (g - TOK,8 - T)? _
16 27)2 JJr2 e
2

(g +tr (820,82 + 830k,83)T0 + i(820k,83 — 830k, 82)T1

. —ig10k,83T2 +1810k,8273
_i 1 // 2k
16 (27)2 JJx2 e
Now we use the identity 5 5 5
i1 2, | (820K, 83 — 830k,82)" + (810k,83)" + (810k,82)
:2(k3+g2)
2 2
e e
4(27T)2 R? g’
5 2 2
i 2 % - (f—m - )) + (ﬁ) sin? 2@ + (Ak)? cos? a
/ dk/ da k
4(27r)2 PE
A K 27,2 2
I iAz/kdk (e -0 2)) Lo+ M ER) (4
= lim |--— =—i|=0nn
Ar—oo | 821 (g£+A2k2)3/2 ! 4" 8
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11
I, =

2
1 11 (koto+ 8 T)0K 8" T
- d3kt 0lg®il) = — /// Pkt ‘ =
4 <2n)3 ///R r(65s 4 @np Mt kg + g

i // PO RACT S ST S
16 27)2 JJre P

2
(810K, 81 + 830k, 83)T0 +ig20k, 83T 1 )

—ZgZ(E)klg)2 +tr (

+i(830k, 81 — 810k, 83)T2 = 18201, 8173
_ 2
16 (27)? //RZ g
Now we use the identity
B ) B (gzak]g3)2 + (230K, 81 — 810k, 83)” + (8201, 81)°
= tr [(koto + g - 7)?] = 4 (271)2 RZ e

=2(kj +g%)

Switching between the coordinates indices 1 and 2 would not alter the integral

and would result an integrand which is identitical to the one of Hiz

Ay K4 272 2
- _L'A_Z/ ALl | BN
4" 8

Omn +
Aeseo |8 21 (€ + MK "

) (43)

One should notice that H}jl, Hiz and the corresponding terms from the first order of the gradient expansion cancels

each other as Ay — oo.

1 1
12 _ 2t _ 1 3 0) :1 200 ~2) _

/// Pt (koto + & - T)(Or, & - T)(koTo + & - T)(O1, 8 - T)
R3

4@y (42 gz)z
i 2, [ =8 (Ong T Og ) + (g )k g 7)g T)(Ikg - T)
16y //de k| &
8 e //Rz 870k, 83)(0k, 83) + 81(0k, 81)82(0k, 82) + 820k, 81)81(Dk,82) + 1(Ok, 81)83(Ok, 83)+

83(5k1g1)81 (Ok,83) + 83(0k, 83)82(0k, 82) + 82(k, 83)83(0k,82) — 81(0k, 83)81(0k, 83)

All the terms in the integrad are odd
—82(0k,83)82(0k, 83) + 83(Ok, 83)83(01,83)| = =0 44
with respect to k; or k;
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01 _ ql0 3 (0) ;0 0) i1
o =m0 = 4(2ﬂ)3[//dktr§ 0G )
11 P (koto + & - T)to(koTo + & - TNk 8 - 7)| _
12y MO 2 -
(—kg + gz)

L //dzktr ~*Og T+ T g T
16 27)2 JJwe &

I 1
M2 =20 = = /// 3 ( (0) ;0 ~(0) .2):
b =M= 2 M EGTG s

11 /// Bk tr (koto + g - T)tolkoTo + & - T)N0K,8 - 7T) | _
4 2n) 2 =
(2m) R3 (—ké +gz)

—028. 0 - )20 9 -
//dezktr[ 8 %8 T+g(f )08 T] :{ (g -7)° = g1 }=0 (46)

={ g7 =gt | =0 @3

16 (27)2

6 Evaluating the first order with respect to g of the gradient expansion

second order

The first order in g of the Green matrix can be written in following form

&k
’ @TO—kqm——A‘rl L AT, CIOk0+(A2+;)k"I
gV Golk+ L) =2 - L Go(k) @7)

q'=0 —ko + gk —ko + gk

The second term in the sum, which we refer as G112, do no contribute to the correlator since the function that multiplies

Go(k) is anti-symmetric with respect to ¢, .i.e.
1) .u (0 1 1
GG iy = 6 G i = -6 G Y. (48)

o)
Thus, the zero order in g of correlator I1 ’/‘lv(q) can be written as

) = g (2 ot Vo | [[] vl + Dwgor - Do) | - @9)
q’=0
Z_<2n>3 [ /ff Cku (600G ji k) + 6L G k) (50)
where
©_ ~koto—gx-T ) _ 1aoto-q-Vi(ge-7)
g _kg +82 ’gkq 2 _kg +g2 7gk - (Akx, Aky’fk) (51)
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and the currents j, and jj, are

(52)

Ja = —(73,0,8370, 0, 83T0),  Jjb = (70, 0k, (8 - T), Oy (8 - T))

6.1 The correlator II,

(101 (1)10 3 1) .0 (0 .1 0).0,(1) 1) _
') = 1) = g [k (60010607 + 601061, b =
q - Vigy - 7)r3(toko + gx - 7)) — (Toko + gx - T)73(q0T0 — ¢ - V(g - 7)) kgS)_
=

8 (277)3 /// Bk tr ((QOTO - k2 . g2)2

qo is proportional to

(g -1)r3-13(g-7)

[/dzk tr(q V(g -7)T3(gy - 7) — (g - T)T3(q - V(gy 'T))ak g3) _

which has zero trace 32 (2n)? g

and we integrate over ko.

Here we use the identity

[/ 63 [(910k, + 020x,)87] 819k 83
. =
8

tr (T[Tka) = 2ifijk 8 (271')2

Due to the antisymmetry

// 2k q2(0k,82)810k, 83 — q1(0k, 81820k, 83 _
g with respect to kj

8(27r)2
A2k2 AR
! @ [ A @ (53)

0 0
//dzkéh( kng)fl( k83 _ @ //d2k _ d _
g 3212 mgy  32m ) gl T e

822
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1)02 1)20 1 0 0 1) .
1) = 1" = s [ (601067 + 601061, F) -

i dsktr((CIoTo g V(gi - T)T3(roko + g - 7)) ~ (Toko + g - T)Ta(q0T0 ~ ¢ - Vigi 7)) kzgs):

82 (—kZ +g2)?
qo is proportional to
(g-7)r3—73(8 - 7) i1 2 q - V(g )38k 7))~ (8x - T)T3(q - V(g - 7)) _
==—— [[ ¢k 3 0,83 | =
which has zero trace 32 (27) 8
and we integrate over k.
Here we use the identity 6,,3 (q1 Ok, + 6125k2)g]] 80k, &3
8 (277)2 // g -

tr (7:7,;7k) = 2i€;jk

g with respect to k

[/ Lk QI(aklgl)gZ(akzgS) Q1 //de A*k3 _ dk A3 _ (54)
8 (27T)2 g 3271'2 mglz 32 mg,z l6mr
0

2 Q2(ak2g2)g] akzg:i —q1 (aklg] )gzakzgg _ Due to the antisymmetry
8 (27r)2

We use the relation

(hoo
a (q)= g(l) g(l)

vy [ eelel e 606, ) -

l 1 / Srtr (g“) j Q(O)]O g@)]og“) 0) We use the cyclic property of the B
al Ja k a . -

4 (2n)? ka trace to make a permutation.
11 3 ) ;0 0 ;0
4 (2n) /d ktr(gkqjagk Ja = gkq]agk J“) =0 65
‘We use the relation
Ol (g) = ///d3ktr Qm 10001, 01,0 .1)_
JaGy Jat+ G, JaGy =
4(2 5 kaqlaZk Ja T B JaSkogle Gily =6y

1 1 | 0 0 | We use the cyclic property of the
- / ke (G0 L6k - 61 iA6L ) = . -

3
4 (2n) trace to make a permutation.

1 1 © o )
Z(Zn’)3 /d3ktr (g .]agko .]é g ]agko ‘]é) =0 (56)
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122 1 1 1 2 0 . 0 2 A1) . We use the relation
130 = g ] CRe(Ghieli 606 i) =1 T D )
gk,—q = _gk,q

1 1 / 5 1) 2402 ©) 2 (1) 2 We use the cyclic property of the
- dktr(g JaGy Ja— Gy a9, J)= -
4 (2n)? kglaZk fa - Fk SaThaTa trace to make a permutation.

11 5O 2400
1o / @k (626772 - 6026 12) =0 (57)

We use the relation
1 1
g( ) (1

ni2 pa _ 11 1) .1 0) 0) 1 A1)
@ =-1"%" =255 [l exu(ahitelz +6Pie i) -

k,—q k.q
1 1 5 1) 1 A0) 2 ©) 1 A1) 2 ji and ji are proportional to the identity matrix
4(2n)} /d fr (gk’q]agk Ja =5 Jagk,qja) - ine GO M ; )
a so swapping G and G'" wouldn’t alter the trace

L1 3 (D) -1 -00) -2 (1) :1,-0).2) _
Z(2ﬂ)3 /d ktr (gk’q]agk Ja — k,q]agk ](1) =0 (58)
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6.2 The correlator 11,

1 .
) =10 = s [ (606175 + 6161 it) -
—q- Vg, - k 1) = (tok . —q- Vg, -
_Z 3///d3ktr (9070 — ¢ - V(g - T))(Toko + g Tz) (Toko + 8 - T)(qoTo — ¢ - V(gg T)6k1g~'r
8 (27n)° (—kg + g2)?

Terms involving go cancel each

= other,we integrate over ko and

i1 q-V(gi T8 T
- = k| 2—8k "5k - .
16 (27)2 // r( &3 g7

q - V(g373)(8272)0k 8171 + q - V(g272)(g373)0k, 8171

use the relation €, = —€;jk

// ) +q - V(g171)(8272)0k, 8373 + q - V(g272)(817T1)0k, 8373
T

16 (2nm)? g

// 2r 24 (V83)820k, 81 + q - (V2)830K, 81 + q - (V81)820k,83 — ¢ - (V82)810k, 83 _

- 8(2np g’
1 // Lk 91(820k, 830k 82 — 820k, 810k.83) + 42(830k,820k, 81 = 8201,830, 81 — 8101,820k,83) _
8 (27‘[)2 R2 g’i
K2 %
_Ng |k|dk§ g mA%q, /dg E+2u _ @
Tor ) P 60 ) @m0 B
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1)02 1)20
n"%(g) = -n"” (@)=1

3 1 0) -2 0).0 (1) -
40n)p /d k tr (gkqugk Jb * G v, q-]b)

/// P tr ((quo —q - V(gx - T))(Toko + g;E ]:2) - ;;zko + 8k T (qoTo— g V(g T O - T)

2 (gk T)gk T
16(2 )2ﬂdkt( Bzg-‘r)

q - V(g313)(81T1)0K, 8272 + q - V(g171)(g373)0k, 8272

8 (2n)

Terms involving go cancel each

= other,we integrate over ko and

use the relation €, = —€;jk

// 2 +q - V(g171)(8272)0k, 8373 + q - V(g272)(8171)0k, 8373

" 16 (2n)? g3

// L (V83)8101,82 — 4 - (V81)830k,82 + 4 - (V81)820k,83 — ¢ - (V82)8101,83 _
8 (271)2 3

g
1 // 2y 91(8101830k,82 + 820k, 810k,83 — 830k, 810k,82) + 92(810k,830k,82 ~ 810k,820k,83) _
8 (2m)? g
A2 G-%  maq [ 2
q1/|k|dk 3 - ‘“/dg N ek S )
167 (€2 + 2mA2(¢ + py)?/ 8n
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nHi2 1)21 1 0 0 1) .
120 = -1 @) = g [ Eke (6605 + 6006 7 -

4 (2n)
(qot0 — q - V(8k - T))0k, (8x - T)(T0ko + g - T)0ky (g - T)

/// 5 —(Toko + g - T)0k, (g - T)(qoT0 — q - V(g - 7))k, (g - T)
d’k tr

8y (—k2 + g2)2

(8k * T)0k, (8x - T)(qoT0 — q - V(&k - T))0k, (8 - T)
We exploit the cyclic

£ th // 2 ¢ —(8k " T)0k, (8k - T)(qoT0 — q - V(gk - 7))k, (8k - T)
property of the trace %) (271)2 r g3 =
and integrate over kg

We use the relations €x = —€; _ i q / Lk (& T)0k, (g - T)0K (g -T)| _

and tr (7;7,;7x7)) = tr (7, 7,747 ) 16 (27)% Jg2 s

1 qo / 2 810:82)(0k183) — 83(0k,82)(0k 81) + 820k, 83) (ki 81) _
R2

8 (271')2 g’:
K2 k2 2
1 g /dzkA2¢—§kA2+A2;2_ lqu /dzkfk—%_ﬂ 61)
8 2np Jeo % 8 (2n)? ¢ o
We use the relation
(1)00 3 1 0) -0 0):0(1) -0) _
@=7 20 /d ke (610,126, 15 + 6,136, 73) = (n (1)
gk,—q = _gq

1 1 1 0 0 1 We use the cyclic property of the
1 / (66 - 686 ) = =

3
4 (2n) trace to make a permutation.

11 3 1) 0,00 _ A1) 0,400
1 /d ktr (Qk bl in ~ il G, ]b) =0 (62)

We use the relation

G» =g

k,—q

(l)ll( ) -

3 1) 0) -1 O 1) -1) _
4(2 E /d ktr (gkqugk Ip + Gy ibGi ) b)

1 1 1 0 0 | We use the cyclic property of the
e / w (6506 - 635G\ h) =
(2m) trace to make a permutation.

11 1 0
o | e (616170 - 616"0) =0 @)
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(1)22 (q) = We use the relation

1 _ (1
gk,—q - " Yg

3 (1 0) -2 0).2,(1) -2} _
4(2 B /d ktr (gkqugk Jo+ G inGig) b)

We use the cyclic property of the

11 3 () 25002 _ 50250 ;2
1 | Chr (63605 - 626 -

trace to make a permutation.

11 3 (1) 25002 A1) 240) 2
42np /d ktr (gk qugk Jb =Gy, q]bgk Jb

7 Summary
At last, the complete effective action? in terms of (2+1)-dimensional frequency-momentum#,
is:

S(q,q0) = / nao(¢)8(q) = 5 ay(q)ay( q) + au(@nly” ay(=q) + bu(q)n}, by (—q)

where the correlation matrices in the lowest order of the perturbative expansion are written as

W@ = Gt Vo | [are(ows Dismen -5

q’'=0
m idy  igx
T T Ter  Tor o .
= | o 0<%H—ﬂm)mm
“lge 00
1 1 q’
" (q) = 10 )3q [/ ki (G(k + —)Jb (k)G (k - —)]b(k))] =
q’'=0
fgy _igx
87 8
W>o i HG + O(¢)
x if
lq _;_n 0

and currents for the fields @ and b are

k ky . .
a=(T3,=-270,—>70), Jb = —T3j% +(0,A11,AT2)

transforming back into space-time coordinates yields

1
S(x,t) = / (n (ao - %tﬂ) + %aé g €ojrapdjay + o eﬂv,lb o,b,

3We extended the result for the case of negative chemical potential.

72

):0 (64)

q= (q! QO) and k = (k’ kO)

(65)

(66)

(67)

(68)
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-1
Wherea = A—0x0/2, ap = Ag—0,0/2, b =0yy, by = 0y, kq = (1 + %H(—y)) , kp = H(w) and Ag = 2|A].
The first term in the r.h.s contributes the Magnus force, the second gives rise to the Meissner effect, and the third is
responsible to the Thomas-Fermi screening. The forth term is an incomplete Chern-Simons term that contributes a

Hall-like response to the external field.

4Here we define ¢ = (¢, go) and not as was used in the derivation of the correlators,q = (¢, —qo) -
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Appendices

A Multidimensional Gaussian integration for real Grassmann fields

In the appendix we show how to calculate a multidimensional Gaussian integrals over Grassmann variables, 7,

. 1,
/(n d’l}zdﬂk)exp (_EUkAklUl), (70)
k

where A is a Hermitian matrix and there is summation over repeated Latin indices[6, 14]. We start with the observation
that A may always be assumed to be skew-symmetric. For if there were any symmetric part, it would cancel due to the
anticommutativity of the Grassmann variables,

1 * 1 * _ 1 * *\
3 %: M [Sym(A)]kmy = 3 %: i (Akt + A)m = 3 ]Z?(Akl + A ) + ) = 0. (7D

Now, an skew-symmetric Hermitian matrix can always be written as A = iA” where A’ is real skew-symmetric. Since
the eigenvalues of a real skew-symmetric matrix are imaginary, the diagonalization can only be carried by a complex
unitary matrix. In general, similarity transformations by unitary matrices should be avoided, since it would alter the
measure of integration [ dn; dni. However, it is possible to bring every real skew-symmetric matrix into a canonical

form, A = UT A’U, where U is a special orthogonal matrix,

~ 50 A
=0 )
j=1 —-A j 0
2n is the dimension of A and +iA; are the eigenvalues of A.
The Jacobian determinant, due to the linear transformation & = (U7 )i;7; of the integration variables, is always unity

(detU = 1), so the integration measure is invariant, [, di; dni = [1i dé; d€;. Thus, applying a block diagonalization

transformation yields and evaluating the Gaussian integral,

/(1_[ d]]zd]]k) e_%ﬂ:*nAmnﬂn = / (1—1 dé—’l’c‘dé‘:k) e-%fZAklfl —
k k
n

/ (n d'fzd'fk) (1 - %f;gklfl) = l_[ il = pf(iA) = pf(U" AU) = pf(A), (72)
k

k=1
where we used the relations pf(U7 AU) = det(U)pf(A) and pf(®,A,) = [1; pf(A,).
Since det A = (pfA)z, in the special case that A itself is a block-diagonal matrix, we can write the relation

1
pf(A) = + [ [ det(A,)'/? = +exp [Z 5 Trlog A, | (73)
n n
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where A, are the block matrices on the diagonal of A. Finally, we can write (up to a sign) the result of integration over

the real Grassmann fields as:

. ¢ _ 12 _ !
/ (l:[ dnkdnk) exp (_E %: 77kAkl77!) = l:[ (detA,)' '~ =exp (Zn: ETr log An). (74)

B Fourier Transform identities based on Parseval’s theorem

1. Let f(x) and g(x) be integrable and let f(k) and g(k) be their Fourier Transform. If f(x) and g(x) are also

square-integrable, then we have Parseval’s theorem (Rudin 1987,p.187):

/ Fx)gmdx = / FgYdk 75)

In particular, if g(x) is real, using the reality condition g(—k) = g(k), Parseval’s theorem takes the form of:

/ F)g(r)dx = / FU)g(—k)dk (76)
Also, if f(x) = g(x) and real we get:
/ F(x)dx = / FU)F(—k)dk a7

2. Substituting k£ = 0 in the defenition of the Fourier transform gives

£0) = / For)dx (78)

C Identities of Pauli matrices products

We would like to evaluate the trace of four Pauli matrices product. In order to do so, we distinguish between six

possible conditions for the matrices combination:
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Condition Implication

i=j (77 TkT1) = 63Ty T1) = 26456

i=1 tl’(TiTkaTl) = 5iltr(Tka) = 251‘16]'](

i=k tI‘(TiTkaTl) = 0ik (26,-jtr(‘rk1'1) - tI‘(TjTiTle)) = 45ij6kl5ik - 26ik6jl

j =k tI‘(TiTkaTl) = 5jkt1'(TlT,’) = 26jk6il
j=1 (7 TiTy) = 651 (26;jte(Tity) — (T, 7Tk T1)) = 46716 0k1 — 2810k
k=1 tr(T;TjTiTy) = Opitr(TiTj) = 20110i;

Where 6,5, is Kronecker’s delta. In order to evaluate the traces in the table we used the identities {74, 75} = 26,51 and
tr(t,Tp) = 264p-

Summing up all the different possible implication yields:
tr (TiTkaT]) = 26ij5k1 + 26il5jk - 26ik6jl (79)

If one matrices in the combination is the identity matrix then we have a sum of three Pauli matrices. In this case it is
easy to show that

tr (TiTka) = Eiiji (80)

where € is the Levi-Civita symbol.

D Fundamental quantities in Natural units

In the notes we used Natural units where ¢ = i = ¢ = 1 are unitless. We summarize the fundamental quantities units

under this unit system:
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Quantity Symbol SI units —  Natural Units Relation
Length X (m) — (s) x=ct
Mass m (kg) — (s™h mc* = hw
Density n (m™?) - (s72) n = #k>
Momentum p (kg m/s) - s™h p=my
Energy E @) — (s7h E = hw
Action S J-s) — (D) Z =5
Scalar Potential aop J/0) — (s™h E=¢eq
Vector Potential a (kgT"W) — (s™h E = %
Gap A (m/s) — @))] E=Ap
Gauge fields | byc,d (kgmfs) — — s E = bucad
Flux Quanta 0 (J s/C) - (1) @, = e
Current density j (C m? mls) — (s72) j=env

E Derivation of the gauge transformation

In this section we derive the most general gauge transformation that maintain the requirements as stated in section 2.

The first rule over the transformation U, as demanded in section 2, is:
U- e = [ U] = ) - (81)
which gives the first demand over the transformation:
u'=U' (82)

The Nambu spinors that correspond to BAG Hamiltonian,as derived in Eq.(4), fulfill the particle-hole symmetry so
they hold the form:

P, - _
NMx,t = _x ' and 7lx,; = ( Ox,t> Ox,t ) (83)
Px.t

where we define 77 = ;7.

Under the the particle-hole symmetry it can be also written as

n=n"1 (84)
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where 7 is the first Pauli matrix.

Using the transformation, U, we obtain a new set of 2D spinors which are denoted by
¥ = Uy, ¥ = (Up)' =5'U", (85)

where ¥ is obtained directly from the definition.

According to the second requirement, the transformation U must sustain the form of the spinors so
¥=Un'ti =907 =p'r, U7, (86)
Equating equations (85) and (86) yields the second condition over U:
Ul =70, (87)

The first requirement implies that the transformation should be represented by unitary matrix. Any unitary matrix can

be represented by a matrix exponential of the form -

U — ei(a/T(J+BTI+)’T2+6T3) (88)

since it satisfies U - UT = 7 and has four degrees of freedom (it can produce four linear independent matrices).

Before continuing we recall that matrix exponential fulfill the following properties:

&L = 1 (89)
XX larb)X (90)
XeX = 1 o1
XY o yeXy! 92)
XD = () 93)

XD = (X (94)

Where X and Y are nxn complex matrices, a and b are arbitrary complex numbers. We denote the nxn identity matrix

by 7o and the zero matrix by 0. Another handy identity is the anticommutation property of the Pauli matrices

{Ti, Tj} = 26ij (95)
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Now, armed with this knowledge we continue by finding the constrains on the general unitary matrix express as

matrix exponential with four parameters. Substituting Eq.(88) in the right side of the equality in Eq.(87) yields

. T T T T . .
,I.IUT.,.1 = 1T +BT| +yTy +OT3)T1 _ LT 1(aToBTI=yT2+0T3)T1 _ ,i(aTo+BT1+yT2-0T3) (96)

Making the substitution on the other side gives
U+ — e—i(m-g+ﬁr'§+yr§+6r§) — e—i(m-(,+ﬁ-z-1+y1-2+6-r3) 97)
So the constrain over the parameters is
70 = (U1')—1 . (T1UTT1) — ei(m<>+,3‘l'1+)"rz+573) . e[((ﬂ()+ﬂT]+’}/‘I’2—§T3) — (98)
e'(tocosr +if - Tsinr) - e (rgcosr +i(F — ?i{) -rsinr) =

; o . . o N
e ((‘ro cosr +if - Tsinr)? = 2i(rgcosr + if - Tsinr)=sinr 73| =
r

. Pt +yTr+ 0T 0T3 | o (.—Btr+vyT ot .
o2 (cos2 r—sin®r + lw Sin 2r — i —= sin 2r + 2 (lu + —0) sin? r)
r r r r r
o ([ B+ 62 Bri+yT Bro—yT1 .,
e 5 cos2r+—2 ‘1'0+l—sm2r—26l—2 sin” r 99)
r r r r
In this this derivation the identities below were used
I ®T) — (o cosr + iR - T) sin ), TiTj = i€jkTk + 04T0 (100)

where T = (11, 72,,73) and r = (83,7, ).

We start by examine the diagonal elements, which are required to be equal to 1, so:
o2 ((ﬂ2 + %) cos2r + 52) =Byt 4 (101)
Since the diagonal elements of U must be real, one must require that
| (102)

Thus, this implies two possible solutions:

1. For @ = nm and m € Z, we get that

(B +y*) cos2r = B +y* (103)

so one option is to require that 82 +y2 = 0. Also, in order to keep zero off-diagonal elements y = 0. In this case

the transformation is given by

U = /7m+730) = om0 c0s 6§ + iT3 sin &) (104)
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2. For @ = 7m and m € Z, we find that

(B2 +y?)cos2r = B2 + 2 (105)

the second option is to demand that » = 7n and n € Z. These demands keep the off-diagonal elements zero. In

this case the transformation is given by
U, = €™ (tocos tn + it - T sin7n) (106)
but the second term, which proportional to sinus, is always zero so we end up with
U, = ™™ 1y cos mn (107)
For @ = 5(2m — 1) and m € Z, we find that
(B> +y*)(1 + cos 2r) = =26 (108)

and since the left side of equality is non-negative, one must choose 6 = 0, r = 5(2n + 1) and n € Z. These

demands also fulfill the requirements of zero off-diagonal elements. In this case the transformation is given by
_ iZ(2m-1) n o . (7
Up =e'2 T() COS E(Zn + 1)) + it - Tsin E(Zn +1) (109)
but the first term, which proportional to cosines, is always zero so we end up with
. N . T
U, = ¢ - 7 sin (E(Zn + 1)) (110)
The two different options can be combined into one transformation
U =¢™" (TOCOS En+f‘~‘rsinzn) (111)
2 2
where {n,m} € Z, T = (11,72) and = (cos{,sin /).
One can readily show that any U is composed of a finite product of the following matrices: 7y, 7y, €M7z and €M1

where yu € R and m € Z. The actual number of distinct sequences can be reduced through use of the commutations

relations between the generators and is ultimately finite.
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F Applying the single-valued transformation to the inverse Green’s matrix

In this section we apply transformation

U= e =00, ) = g7 (112)
over the 2D p-wave Green’s matrix
| i0; + Ay — ﬁ(—p +A? +pu - {A,px - ipy} Ao 2
G = _ . . 1 , A= ,2) (113)
~{&p.+in,) 0, - Ao+ 5=(p + A —

Thus, we need to evaluate the expression UG~!UT,

el i0; + Ao — 2= (-p + A + pu -{Ap.-ip,} £/0+) 0
0 e - {Z,px + ipy} i0; — Ap + ﬁ(l’ +A? —u 0 ey

We split the task into a few parts which are calculated individually using the identities

_i5x8=[Pag]’ {Pyg}EPg“‘gP:ng—laxg

as follows -
A70Fp + A = Fp+i(iVy+iVO+A=Fp+Vy)+a
250Fp + A 1e* = (Fp+aFVy)* = (Fp +a)’ F2(Vy) (Fp + a) + (Vy)* —iV?y
=Fp+a) +{p,Vy} F2Vy)a+(Vy) (114)
Fi6 Ag +2i6 3 _Fi6 Fi6 Ag +i6 +i0\ 7 Fi0
Ae {7e ,Dy}e = e 5 (Ze p.e )/le = Ao (py + 0xy) = Aop + Aodxy
where {29, p } = p.ei®el® + ¢i%i%p = ¢l ¢+ ¢1209.0 + ¢¥p e — ¢200.0 = ¢192p 10

So after the transformation the Green’s matrix is
ol - i0+ag—b,— 5= [(-p+a +{p.b} —2b-a+b*| +pu - Ao(p, —ipy) — Ao(bx — iby)
—Ao(p, +ipy) = Mobyx +iby) id; —ao—b; + 5= [(p+a)* + {p.b} +2b-a +b*| —

In terms of Pauli’s matrices it can write the Green’s matrix as

2 2
P +py {Py-ax} +{py.ay}
L A O —Ao(PleJrPyTz)— —ap T3 — — AR AR (115)
2m 2m
{Px bx} +{py, by} a +a? —acb, —ayb, b2+ b2
S » 73— Ao (bx T1 + by T2) —bo To — S s 0 N S A
2m 2m m 2m
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where we defined the fields>

ap=Ap—0,0, a=A-V0, b =0, b=Vy (116)

G Showing that there is no coupling between the 3-vector fields a and b

We start by showing that all the integrands of the correlators H’a' Z are antisymmetric with respect to the momentum-

frequency (2+1) vector, k:

(~(ko ~ LYr0 ~ groa - TH=T3)(~(ko + L)ro— g4 _q - T)70
(G0 + DGk - )jfk)) = — e -
(ko + 22+ 2, ) (~ko - 22+ 82, )
2i(81k+482k-4 ~ 82k+481k-2) ~ 2((ko = B)gsp-g + (ko + )2 xs4) B
(<o + %02+ 82, ) (~ko - 92 + 82, )

- (G(-k + Dit-hg-k - Djg-p) a1

(=(ko = B)T0 — grva - T)(=0k 834T0)(—(ko + L)T0 — g _a - )70
w (G(k + itk - Hih)) = 2 )70 Bt 270~ &g i
(s 97+ g ) (o= 97 v )

=2 (ko = B)hko + %) + 81841 )

(—(k() + %)2 + g,ir%) (—(k() - %)2 + g,zf%

)ak,ga,k = -t (G(-k + Djs-hog -k - Djg-i) @1®)

(—(ko = B)T0 — grva - TN=0k,834T0)(—(ko + L)T0 — g1 - )70
w6k + D2tk - Hih)) = 2 )70 Bt 270~ &g i
(ko + 97 + 82,4 ) (ko - 27 + 74 )

=2 (ko = B)hko + %) + 81841 )

(—(ko + %)2 + g’ir%) (—(k() - %)2 + g,zf%

)akzga,k = —tr(G(-k + D2hg k- Djg-i) 119)

SFor A = Age?™1) /2 the corresponding transformations are U = 1e~i720(:0/2 and A = ¢~?¥(¥>1)_ In this case, the fields are defined as

ap=Ao—0:0/2,a=A-V0/2,b; = dyyandb = Vy.
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w6k + Dyjawg - i) =

t (=(ko — B0 - 8+ 1 - T) =0k g3470)(=(ko + Lyro - 8k-1 T8k T
r =

(<o + %02+ 82, ) (~(ko - 92 + 82, )

2 ((ko ~ D)gk-g O 8k + (ko + B)gprq - 6k1gk) +2i (g3,k—%g2,k6k1gl,k+%

—82,k—%g3,k5k181,k+% _gl,k—%g2,kak1g3,k+% + g2,k—%gl,k5k183,k+%
— 4902 2 (ke — 202 2
(ko + 92+ 82, ) (~ko - 22+ 82, )

—uw(Gk + Dnhgk- Do) 120

Ok, 836 =

Gk + D)2a0g - Djjh) =

(=(ko = )10 — grrg - T)(0k,83,70) (ko + $)T0 ~ gr_g TV &k * T
tr =

(_(kO + %)2 + g,%Jr%) (_(kO - %)2 + glz—%)

-2 ((ko -8k O 8r + (ko + T)gpa - (9k1gk) +2i (gS,kJr%gz,k—%ak]gl,k
~82k+483k-40k 81k ~ 81k+282k-3 Ok 83k + 824+ 2 81 k-4 Ok &3k
(—(ko + 9+ g,@%) (—(ko - 92+ g,f,%)

~tr(g(-k+ Di-rg(-k - Djj-r)) a21)

Ok, 83k =

(G + Diktogk - i) =

(=(ko = B)70 — grrg - T)(=0k 83.70)(—~(ko + $)T0 — gr_g )08k * T
tr =

(ko + %P + 87, ) (-0~ %2 + 87, )

-2 ((k ~ $)8k-1 * 8 + (ko + P)8xrg '3k2gk) +2i (g],k+%g3,k—%akzg2,k

~83k+281 k-4 082k ~ 81 k+982k-4 083k + g2,k+%gl,k—%ak2g3,k)
— q0)2 2 — _ 40y2 2
(ko + 92+ 82, ) (~ko - 22+ 82, )

—tr(G-k+ Dk -k - Dji-r) (122)

Ok, 83k =
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w6k + ) 2u060 - jw) =

t (=(ko — B0 - 8+ 1 - T) (=0 g370)(=(ko + Lyro - 8k-1 T)08k T
r =

(<o + %02+ 82, ) (~(ko - 92 + 82, )

-2 ((ko ~ D)gr-1 O + (ko + B)grry - 3kzgk) +2i (81,k+%g3,k—%3k282,k

83+ 281k-1 082k — 81 k+282k- 1 0k83k + 824+ 281 k-1 Okr 83k
(ko + 92+ 82, ) (~ko - 22+ 82, )

- (G(-k + D2-hg k- Di2-k) (23)

Ok, 83k =

w (G + Distogk - D) =

(=(ko = B)70 = grrg - T(=T3)(=(ko + $)T0 — 8x_g TV 8k * T
tr =

(ko + %02+ 82, ) (~ko - 92 + 2, )

5 —(ko = 9 )(ko + 90k, g3k + i(ko — §)82-20k 81k — i82 k2 (ko + 50k 81k + 81442 814-1 Ok, 83k
+80k+ 282420k 83k ~ 8344283k 0k 83k ~ 834+ 2 81k-1 O 81k — 81k +2 8342 Ok, 81k
(<o + %02+ 82, ) (~(ko - 22 + 82, )

- (G(-k + Djthogk - Djj-i) 24

Gk + Dyjtoge - i) =

(=(ko = B)70 — grrg - T(=T3)(~(ko + $)T0 — 8x_g T8 * T
tr =

(<o + %02 482 ) (~(ko - 2 + 7, )

5| ko= D)ko + 5834 — i(ko = 581 k-1 0 82k + 181 k2 (ko + D)0 82.k + 81.4+4 81k~ 02831k
~82k+2 8241 083k ~ 8344183k Oho83k ~ 8344982k 1 082k + 824+ 9 83,41 Ok 82k
(—(ko + Ly 4 g,f+%) (—(ko - )2+ g,f_%)

—tr(G-k+ Dok -k~ Dji-r) 125)

We shown above that the integrand of the correlator I1,;, is antisymmetry with respect to k, .i.e.
tr (Golk + D)ja)Gok = D)jo(k)) = —tr (Go(—k + D)ju(=K)Go(—k = D)jo(~k) . (126)

The integrand of the correlator I1,,, is also anti-symmetric with respect to k. It can easily shown by (a) using the cyclic

property of the trace operation to reverse the order of the fields in both sides and (b) replacing ¢ with —¢g in both sides
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to get correlators into the right form.

In conclusion: Since the correlators involve integration over the whole momentum-frequency space and the
integrands are anti-symmetric, they are all equal zero. Thus, there is no coupling between the 3-vector fields a and b.

This is a general property that holds to all orders of the gradient expansion.

H The vortices exchange statistics

The phase of the p-wave gap is defined as
0= Z 0;; (127)

J(D)
Where 6;; = arg (r; — r;) is the phase that relates a particle at site, r; with a vortex located at r ;.
The argument function is defined as the angle between the x axis and the vector r and is given by

y

x—4/x2+y?

arg (r) = 2 arctan ( ) + (1 +20) (128)

with £ being the branch number.

Applying a suitable gauge transformation, the phase of the superconducting order parameter, A(r) = Age®®) is
transmuted into a potential field, a(r;). Under this kind of gauge, adding vortices to the system through the order
parameter is equivalent to placing magnetic flux of quanta ®j. One should emphasize that only singular gauge trans-
formation create fluxiods.

The vector potential field a(r;), associated with phase 6 by the gauge transformation

U= w02 (129)

is given by

2m Yij 1 . yij,
3.9 (r;) = Z V. 0i = Z V,, arctan (x_J) = Z 7 (x—y - —zjx) (130)
0 i) i@ O

ij
_ Z xij§ — yijX _ Z X Py
x? Tij

2
i YtV e

85



Where r;; defined as r; — r; and ®y = 7 in natural units (@9 = /#/2e in SI units). It will be shown as useful to define
the potential at r; due to a vortex that located at r ; by
_ (D() ZXF ij

i = —
J 2 rij

. (131)

From hereby we regard the factor (/27 as unity and recover it only in the end of the calculation. Since the gauge
transformation is singular, the vector potential creates a perpendicular magnetic field (The terms charge, magnetic field

and flux, in this context, are borrowed from the terminology of the Maxwell’s electrodynamics) of strength

(V,ixa,-j)'iz(V,ixV,iO)i =0 , ri_,;tO
(V,, xa)-2= ;} . (132)
JFL . 1 1~ ~ . 2
Jim e [ (0u) - (Byrsdes) = fim 3 = 0 i = 0

The result of the first case r;; # 0 is trivial. A curl over a gradient of a scalar field in a simply connected subregion
is always zero. This result can easily obtained by using the deferential form of the curl operator over the field a. In
the second case r;; = 0, the derivatives at this point are not well-defined and the curl is calculated directly from its

definition

NSO
(an)-n:élino(mj{ra dl) (133)

Here, 9§r a - dlis a line integral along the boundary of the area in question, |S| is the magnitude of the area, n is the
unit vector perpendicular to the plane and dl is tangent to " and pointing anticlockwise with respect to . We apply
the linear operator, curl on each term in the sum separately. Since the calculation should hold for any arbitrary closed
contour we can choose a different loop, that would ease the integration, for each term. The contour of the term, a;; is

chosen to be a circle centred at r.

The result of the curl above seems proportional to a delta function. In order to find its proportionality coefficient

facn://wms. (134)
T S

Where the notations and integration contours are the same as used to calculate the curl by its definition. ds is

we use Kelvin—Stokes theorem,

perpendicular to the plane enclosed by the path integral and positively oriented. Calculating explicitly the 1.h.s of the

ZZN:/dzrVXa. (135)
)

theorem yields

from which we can deduce that

Vxa=21 ) §riy). (136)
)
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Introducing back the factor ®q/27, the relevant expressions to the integration over the Chern-Simons term are

V xa=d, Z 5(rij) . (137)
JG)
where
_ O ‘fpij
atry=51> = (138)
J(#1)

and the factor @ in the expression reflects the fact that these are single-quantum vortex in a p-wave superconductor of

spinless fermions.

The expression for the scalar potential —ay, the time derivative of the phase 6/2, is
YijXj = Xijy;
—ao =00= ) 0= ), o (139)
(i) j@En T T i
Usually, the particles and fluxoids move quite independently of each other. However, if the transformation introduce
a Chern-Simons term,

Les = €"a,d,a,, (140)

into the Lagrangian then the particles are endows with the flux. Thus, when one of our particles move around another,
the effective action acquires a phase. We demonstrate the exchange process by calculating the contribution of the
Chern-Simons term in the case of the exchange of two particles. The path of the interchange between two vortices is

illustrated in Figure 3(c). Integrating the Chern-Simons term for the interchange yields

/dzridt L. = /dzridt E”V’la,,(')va,l = /dzridt ag(Ovax — dhay) =

/dzr,dr o > 06 |(V xa), = /d%d; Te D i || @0 Y 6(rip) | =

J(#l) j(¢l) J(#)
2

@5 Y=y
50 [ nar Y L Gy - )+ b0 - 1)) =

JE) T i

. . . 2 . .
__/ (xlzyz Y12X2 + X21Y1 — y21X41 | _ 5 /dt X12)12 — Y12 X12
2 2 T on 2 2 -
X+ ¥ 1t 2 p Yt
) O(tr)=n )
0 0
— dfpp = —
2 / 275
9([,‘)=0
where in the last step we switched to relative coordinates defined as
ryy=ra—ry, p=ry+ry. (141)
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The term Z X r;j - #*;; equals zero when 7;; is parallel to r;;. Thus, radial parts of the contour do not contribute to
the integration. Hence, the two operations, exchange of two particles and taking one particle half a rotation around the

other, are equivalent. To ease the integration we take the contour as shown in Figure 3(c).

Next, we calculate the contribution of the CS like term due the presence of an external magnetic field B(r) =
I /12 Ko ( )z associated with a single-quantum vortex flux of @y [5]. The integration contour is taken as shown in
Figure 3(b) and calculation is done in two steps. First, we we move particle 2 along the arc with radius R, while keeping
particle 1 static. Then, we move both particles simultaneously in such way that separation distance between the two

particles is kept constant. For the first part we get

2

1 ) 1 ’ D i\ _ % K "\ _
g/d ridt agB, = g‘/d rid (—2 P) ,2) (2 %Ko (7)) ‘_16m2/0 dr rKo(z) -

o R (R m R (R n

0 —
Y2 (=== 1= 2Kk | = = _Z (42
1671( P ‘(/1)) 16( P ‘(/1))R TR

Here A is the penetration depth and we made the replacement ;5(t¢) — 0;2(t;) — aH(r; — R). The justification of the

replacement lies in the fact that for a given r, = (xp, y2) we can always map to each vector in the upper plane,r, =

_ (X(Y+y2) 2X2y7

y-y2 —y) such that arg(r, — ra(t)) +arg(r - — ra(t)) = 2nAl. Here

(x, y > 0) a vector in the lower plane, r _
A{ represents the difference between the branches of the two arguments. In the beginning of the circulation, at time ;,
A¢ = 0 but after particle 1 finished half a rotation, at time ¢y, Al = H(r — R).

For the second part we get

—/d ridt agB; = “3x 3/12 /dzr’dt (a’ ’2KO( A ) * H’GIKO( A )) -

@2 — _
0 /dzrdt (B,arg(r —r2)Ky (lr /1”') + drarg(r; — r1)Kop (|r | )) =

3232 1
@2 r-r—R r-r
- 327r;)/12 /dzrdt (c")targ(r -r)Kp (%) + Orarg(r —r> — R)Ko (l/l—ﬂ)) =
- o /dzrdt [Orarg(r — r2 + R) + drarg(r — r2 — R)] K Ir-ri =0 (143)
327512 e e A

Here ry(t) — r1(t) = R, R = (R,0) and r,(t) = (x2(¢),0). In order to show that this part of the integration do not
contribute, we notice can always map to each vector in the upper plane,r, = (x,y > 0) a vector in the lower plane,

_ =(x,—y) such that arg(r, — ro(t) £ R) + arg(r_ — rp(t) £+ R) =

We found that the contribution of the external magnetic field cancels exactly the contribution from the collective

response of the condensate when the distance between the two vortices is infinite long, R — oo. This demonstrates that
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when the exchange is performed with large vortex separations compared to A, this CS-like term does not contribute to
the exchange phase. At small distances, non-universal contributions will occur.

(a)

(b)

......... (C)

~~“~>-___—"’

Figure 3: Equivalent contours of integration for the interchange of two particles. For the deficient CS term, The

equivalence is a consequence of the integral being linear to the arc central angle, while radial parts do not contribute.

For the complete CS term, the equivalence is due to the integral being linear to the winding number.
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The second addition to the vector potential, b(r;) due to the gauge transformation

U= (144)
where
yory=r) (Z H (O, - 276) - Z?{( 2l - 91,)) (145)
J(&#i)
iy

is given by

—b Viy=n ) (Z 5(0;; — 2mt) — Zé( 20l = 0) | Vibi; =7 > Z 5(0;; — 2mL) V6,5 (146)
J(D) j(#i) (=—c0
5(0;)

The curl of the vector field b can be inferred from the Kelvin-Stokes theorem. The contour integration for the j term
in the sum is given by
m, jisinside I’

7T A
T 9," A
a / b[jdl =T /(5(9”) + 5(9,‘j - 27T))—](9ijrijd9[j) = (147)
0 Tij 0, j is outside '
r 0
Where the notations and contour are the same as used to calculate V X a in Eq.(132). The result does not depend on
the specific shape on the closed contour, that is to say that if the point r; is inside the closed loop the integration would

yield @y and otherwise zero. Thus, the curl of b must fulfil

) = / V x by ds. (148)
S
Thus, we deduce that
Vxb = Z 5(rij)a (149)
i)

Also, the expression for the field by, the time derivative of y(r;), is given by

—bo =0y =-n Z Z 8(6;j — 27OV ;0iFj = -7 Z 50, (150)

J(#i) b=~c0 J(#)

In order to stress the fields special properties, we write the field in Cartesian coordinates. Under this coordinate system,

the Dirac delta is
Z 6(0;j — 2mt) = x;;H (x;7)0(yij) (151)
7

so the field b can be written as

bij = PoH (xij)5(yij)y- (152)
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and the expression for the field by is

by = @g Z H(xij)6(yij)yj (153)

JGD)

This means that result depends only on the number of times and the direction in which the contour crosses the line
yij = 0.
The key to write the Dirac delta in terms of Cartesian coordinates is to notice that for a single vortex at the origin we
have 6 = 0 (mod 27) when y = 0, x > 0. We assume that in the vicinity of the positive axis (x > 0,y = 0) we can
always write the argument as 6[x(y), y] with x(y) being some parameterization that depends on our specific problem.
Thus, the total derivative of 6 at the point (x > 0,y = 0) is

do
dy

B [60 . 00 6x]
(x>0,y=0) dy 0xdy

and by composition rule of a one dimensional Dirac delta function we get

X — yOyx 1
- Y > = (154)
(x>0y=0) X" T Y7 lxs0y=0) ¥

D60 =270) = 6()/1d6/dy | 50,-0) = ¥H(X)5() (155)
14

We processed by calculating the contribution to the action due to the Chern-Simons term associated with the field

b for the interchange two vortices. For the case that 4 = 0 we have

/ d’ridt € byd, by = / d%rdt by(81 by — 02b1) =

/ d2r;dt| @ Z (i (0, — 20

@) \(==c

VjHij . I"j (V X b)z =

/dzridl (D() Z S(QU)VJQU . I‘J (DO Z 6(1'1']') =

J(#D) J(#i)

q’%/df (0(812)V2012 - i + 6(621)V 1621 - #1)
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The calculation for u # 0 is more complicated and goes as follows:

/ d*ridi(1 = 8,0)€" b, 0,by = / d?ridt (b16rbo — b18oby + brdoby — b281by) =
/ dride )’ [bi{ (b i + B 9) = b 0y (b s + b yi) — b (0165 i + Do i)
Jk#]
40 @b} + ot = / dride Y (B4 o) (a6 - o) =
PR P —
bl

0
/dzridt (52 + 5152) (0202 = 1052) + (12" + 03231 (00! - o3| =
®, / de | (632 + 83'50) + (bf201 + b3 ) | = @F / dt (5(012)V2012 - F2 + 6(021)V1021 - #1) - (156)

We continue by switching to the relative coordinates which are defined as

ry=ry—ry, p=ry+rp (157)

/dzr,-dt e’“’"byé‘,b,l = q)(z)/dt (5(912)V2912 s Py + 5(921)V1921 . i‘l) =

(D(Z) / dt (5(912)V2912 + 5(921)V1921) p+ q)(2) / dt (5(912)V2912 - 5(021)V1921) o1 =
021 (tp)=nt
<I>3/dt (8(621 — 1) + 6(621)) V2162 - 21 = D) / (8(621 — 7) + 6(621)) b2y = DF  (158)
621(1:)=0

The exchange of the vortices is done simultaneously and with the same angular velocity as shown in Figure 3(a). Thus,
p = 0 along the interchange process. However, this selection is a matter of convenient since the exchange process
depends only on the number of times branch cuts have been crossed and not on a specific contour. The following

identities were used in the calculation above

0o =6 +m, V2012 =V36, V6 =-V26;. (159)

I The density particle and current associated with the field a

For the effective action of a 2D spinless p-wave superconductor,

1 m K, K
S(x,1) = /cj;; (n (ao - %cﬂ) + Eag - g cojkaodjai + éeﬂvﬂbﬂaybl (160)
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-1
Where @ = A — 8,60/2, ap = Ay — 8,0/2, b = ey, by = Oy, ke = (1 + %H(—u)) .k = H(u) and
Ao = 2JA.

In what follows we consider only the continuum limit with g > 0 for which the effective action is simply

2
a m 5, 1 1
S(X, I) = /‘fj’; [I’l (a() - %) + E(lo - aao(v X a)z + Ebo(v X b)Z (161)
where we used the relation % f 94Xy ba0uby = ﬁ f 4XDbo(V x b), that is proved in Appendix H.
The expression for particle density is
oS m 1
=—=—a9—- —(Vx + 162
P say 21 ap 8n ( a), +n (162)
and for current density it is
1
j=VaS = - LaVea - —agVa(V x a), (163)
m 81
By differentiation in parts, we write the term with curl operator as
ag(V x a), = 0x(apay) — ay0xag — 0y(apay) + axdyag (164)

The full spatial derivatives of fields that are bounded to be zero at infinity do not contribute to the effective action and

can be neglected so the current can be written as
. n 1 n 1 .
Jj=V4S =-—aVsa+ —V,(a0yap — ay0xap) = ——a - —(2Zx V)ag (165)
m 81 m 81
The vortex density in the weak pairing regime is proportional to

1 1
pe = 0byS = o (Deby = dyby) = 5 ; S(r—r)) (166)

where r; are the vortices coordinates.

J Magnus Force and the vortex mass

The Magnus force is a Lorentz-like force that acts on the vortex in the presence of a finite superfluid density. Starting

/ dt // d*rné,0/2, (167)

from the term in the action
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we write 6 = arg (r — R(¢)), where R(¢) is the coordinate of the vortex. We can now write

g/dt//dzr O:arg (r — R(r))

= —g/dt/ d*r &R - Vyarg (r — R(1))

:/dtR~ [_g//[ﬂr Vrarg (r — R(©))| (168)

A= —g / d*r Vyarg (r — R(7)) (169)

We define

with associated “magnetic field” B

B=VgxA= g/d%vR x Vgarg (r — R(1)) = 7ni

(170)

The vortex thus experiences a Lorentz force with associated magnetic field 7n, where n is the superfluid density.

Also, we can generate an expression for the vortex mass by rewriting the second term in the action as / dt%mvf(z,

where m, = [[ d®r 72(A - V,0/2)%.

K Square lattice

The Hamiltonian density for the case that no electromagnetic fields penetrate the superconductor, there are no vortices

and the coupling constant A is real (this can always be accomplished by the gauge transformation ¢73%/2, where 6 is
the phase of the order parameter) © is
P>
H=|=—-pu|13+2Ap, 71 +2Ap,T>. 171)
2m )

Using the approximation (1 — cos(p,a)) ~ (p,a)?/2 and sin(p.a)/a ~ p, and the corresponding approximation for

the y component, we find that the Hamiltonian density for a square lattice is
1 2 . .
H=—|—(cosp,+cospy)+|u——]||73+2Asinp,71+2Asinp,7, (172)
m m

where a is the lattice constant and from hereby we take it to be unity. The eigenenergies are

1 2
Ey = i\/[—(cos ky +cosky) + (u - —)
m m

SA is the same order parameter appearing in Eq.(1). We should be careful and not mix Ag = 2A with it.

2
+4A2 (sin? ky + sin® ky) (173)
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where ky and ky are the eigenvalues of the momentum operators p . and p, respectively. The bare green function that

fits the square lattice Hamiltonian is
—Tow — 8 T
Go= ——5— (174)

—w?+gl —in

where

1 2
grx = | 2Asin ky, 2Asin ky, ——(cos ky + cos ky) — (;1 - —) (175)
m m

&k

and
2

+ 407 (sin® k + sin® ky ) (176)

1 2
g,% = [E(cos kx +cosky) + (u - Z)

The electron density is

1 1 T 0 i 1 &k
n=lim —tr| —— dzk/ dw Go(k, w)T3e ’73”) = —//dzk (1 - —) 177
n—0 2i ((271)3 .[,r [,r —o0 olk: @)t 872 JJo |8 am

The coefficient of the partial Chern-Simons term is —«, /87 with”:

U [ €iva8iOk, 8v Ok, 84 .

= — 178
Ka in |g|3 ( )
The coefficient of the complete Chern-Simons term is «; /87 with:
1 g Ok, 8Ok,
Ky = 2, €uva8u 3gv 82 (179)
4 lg|

All the integrals over the momentum space can be evaluated numerically.

"The indices are taken modulo 3, .i.e3 — 0
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Appendix B

Signatures of the topological spin of
Josephson vortices in topological

superconductors

1 The many-body Hamiltonian in momentum space
The Hamiltonian of the topological Josephson junction in the background of a moving soliton is
H = / dx¥HY,, (1)

where W, = (¥, )T is a spinor which consists of a periodic and an anti-periodic Majorana field (the fields are real

functions), respectively. The single particle Hamiltonian is

H = 1ivd, — t,W(x, q), 2)
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with W(x) = mcos[n(x — ¢)/L] being the Majorana mass term.

We perform the following mode expansion!,

1 —ik

. = ikpx 3
17/ T kzp:e l//k,, 3)

_ 1 ox
WX = [L Za:e k ¢ka' (4)

where

21 2r 1

kp(m) = Tm, kq(n) = A (n + E)’ mne€ L. 5)

and the opposite signs of the exponents reflect the counter-propagating Majorana edge states. Thus, the Hamiltonian

density transforms as follows:

Lh Eh 1 Eh (kK
/ dx g Hy Wy = / dx (VO = — / dr 3 e O kg, v,
-Lj “Lp L Jwrp KpoKly
N
= Z 5—k,,,k}, (Vk];)wk,,wk;, = Z(_Vkp)wk,,w—kp = ZVkp(n)ll’—n’ﬂn
Kk, kp n=-N
N 1
= ovo+ ) vky (Ui — Yuty) ©

n=1

'If we are interested in the momentum range kp, (nymin) < kp < kp(Mmax) than kg (nmin) < kg < ka(nmax = 1).
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Lh ~ ~
[ dx Yy Hy ot x

Lh

Lh _
[ dx YxHi oYy

Lh

where we used the relations

L

/ dx l//x( ivOx )wx = / dx Z ei(ka-'—k;)x(‘)k(/z)lpka‘/;k&
-Ly -Ly,

kask:l
N-1
D Ok, VR, = Z(wkamw ke = D VKl 10
ka,kl, kg n=-N
N-1 .
D Vka(m) (5 = Bl ™
n=0

Lh Lh

f ,, e i) = f ,, A WO

[

dx Z eikako)% cog(n q)*//kp Ui,

Kprka

[Nl

[~

% i Z ilka—kp)x (pin Tt 4 pmin Tt =W, Uik,

[)9

im . q . q -
7 Z(ém,nﬂe Lo+ 5m,nemL)¢k,,(m)¢ku(n)

"’\r"

m,n
N N-1
lm in in
Z (6—m,n+le L + 6—m n€ L)dl m(r//n
-N n=-N
m N N-1
—in4d it d -
vy Z Z((sm,nﬂg L +(5m,n€mL)Wm$n
m=1 n=0
N N-1
- q _aq .
Z(é‘m,n-ﬁ—le’nl‘ + 61’”,’16 T )d/;ld/n
m=1 n=0
m e i a R
+ = Wope L + Yoroe™ L) (®)

ko(n) = %(Zn +1) = —%(2(—;1 D)+ 1) = —ka(-n—1),  kp(n) = —kp(-n).

in order to obtain Eq.(6-8).2

2 Integral representations of Kronecker delta. For any integer n, using a standard residue calculation we can write an integral representation for

the Kronecker delta as the integral below, where the contour of the integral goes counterclockwise around zero. This representation is also equivalent

to a definite integral by a rotation in the complex plane. 8y, , = ﬁ f

x-n-1 _ 1 i(x—n)p
|z|=1 z dz = 2 /(; ¢ dy
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Derivation of Eq.(7):

N-1
- - 2 1\ - -
kZ:(—Vka)lﬁkalﬁ—ka = Z A (” + 5) Ykam¥—ka(n) =

n=—N
N-1 . Ay
Z y— 2 (n+ )lﬁka(n)wk (n) Z V— L (—I’l+ )wka( ")w ka(-n)
n=0 n=1
o1 R
T (n+ E)wka<n>‘/’/§a<n> 4T (” )'pk Cnka(cnt) =
N-1 .
> vka(n) (50— dnd}) - ©)
n=0

Derivation of Eq.(8):

Z (5m,n+1e Lt Spne’™ )lﬂk,,(m)l//ka(n)

-N<m<0
-N<n<0

—in4d ird -
Z (6—m,—n—l L + 6y pe'” L) lpfk,,(fm)(//fku(*n—l) =

O0<-m<N
0<-n<N

Z

N
= 0 D (e E 4 G E )yl (10)

0

(6m’n’e ini + o, n+le )

O<m’<N m=1
O<n’+1<N

N
Il

The Hamiltonian in terms of Nambu spinors with a cutoff of N = 2 (|kp| < “L—”):

(w%n b Yo Vi Vi Iy Jr U wl)

x990 0 0 0 0 0 &\|Va

o -¥ 0 0 0 0 0 & Ky

0 0 0 0 0 0 £ L 0]y

o 0 0o F 0 ¥ 5 0 0[yx

H = o 0 0 0 F 5 0 0 0]lys
o o0 o0 - &£ -3Z 0 0 0 w%

0 0 - - 0 0 -2 0 0]fgt

- T

0 % % 0 0 0 0 F 0},

e &0 0 0 0 o0 o0 I T

i d
where ¢ = me'™ L.
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Remarks:

1. The spinors in k-space consist of regular fermion fields for £ > 0 and Majorana fields for k = 0.
Proof:

We start by calculating the commutation relations,

Wit} = 3" e KD g+ o)

x,x’

i 0, kk'>0
_ Ze—z(k+k x Sk = .3
X 1 =k"=0

In addition, since ¥, = 3, ¢**yy and ¥, = zp; we find that Y = wik. Using this relation we find that

Wi 0} = Wi v} = S (12)

Thus, while for £ = 0 the fields obey majorana commutation relations, for k£ > 0 they obey fermion commutation

relations.

2. The k-space Hamiltonian for reversed boundary conditions can easily deduced by exchanging the positions of

¥ and ¢ in the spinors and then comparing it with regular Hamiltonian:

(sz l;x) (17ivox — T, W) (l{x) = (ll’x &x) T)%(Tzivﬁx - TyW)T)% (:ZX) (13)

X

Hr

(J;x lﬁx) (=72ivOx + T, W) (J/x)

X

with
- 1 -
Iy = ﬁZe'wk,, (14)
kp
1 >
e = ﬁZe"‘“wku. (15)
ka

Thus, k-space single particle Hamiltonian for regular boundary condition and the reversed are related by:

Hg =1t Hty =-H (16)
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2 The momentum states of the Hamiltonian density

Next, we derive the connection between the eigenstates in position space and momentum space, of the single particle

Hamiltonian. The eigenstates are found by solving the coupled equations,

( ivdy iW(x)) ( f(x)) _ E(f(x)). (17)
—iW(x)  —ivd[\g(x) 8(x)

We perform the following mode expansion,

1 .

flx) = ﬁ%eﬂk”)‘f(kp) (18)
1 ik

= — ) eargk,). 19

g(x) \/z;e g(ka) (19)

We substitute the mode expansion and examine a specific k,, and k,, by applying the operators L LL//22 dx exp(—ik/,x)

and /_ LL/ /22 dx exp(ik, x) to the first and second equations, respectively. This results

/ dx > vk,)flkp)e o rkolx 1 / dx > W(x)glka)e ke ko)

kp., k), kask}y Kkl
/ dx ) (—vko)glkg)e!heatkar—i / dx ) W) f(ky)eka el = E / dx )" glkg)e!karka)s
ka-k kp.ki ka-k;,
Preforming the integration with respect to x yields
& Y kpflhp)+i D Wika = kplglka) = E . flkp) (20)
kp kp,ka kll
v Y kag(ka)=i ) Wika —kp)f(kp) = E ) g(ka) @1
ka kuykp kg
where for brevity we omitted the prime tag and W (k) = % _LL//22 dx e**W(x).
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3 Properties of the Hamiltonian in k-space

The Hamiltonian in k-space posses the following properties:

1. Particle-Hole symmetry (PHS),
H = —(Cyy1 © C,)KHK(Cpy1 ® Cyp),

where K is the complex conjugation operator and C, is anti-diagonal matrix of ones with dimension n3.

2. Reversed soliton symmetry (RSS),
H(-q) = (:K)H(q)(KT),

which is valid since ¢(—q) = —c*(¢) with ¢ = mein i 4
3. For any set of parameters (v, m, L, ), there will be a single zero-mode,
det(H) = 0.

Moreover, the zero-mode is an eigenstate of the PHS operator.

(22)

(23)

(24)

4. For m = const the eigenstates are periodic in ¢ with a period of 2L. This can easily be observed by writing the

Hamiltonian as,
H(q) = T(q)H(q = 0)T"(q),

where T = T() @ T? is a diagonal block matrix with

T,(nl)n = 6m,nei”%(2m’l)e’i”%(2m, 1<mn<N+1
T’(nZ)n — 5m’ne—in%(Zm—l)ein%(ZNH), l<mn<N.

Thus, the eigenstates of the system are 77(q)y(q = 0).

(25)

(26)

@7

5. For m = const the spectrum of the system does not depend on the soliton’s displacement, g. We notice that

T is also unitary which means that H(g) can be expressed as similarity transformation of H(¢ = 0) and the

eigenvalues of matrix are always invariant under similarity transformations.

3An n-by-n matrix A is an anti-diagonal matrix if the (i, j) element is zero forall i, j € 1, ..., n withi +j # n + 1.
4c¢ = const fulfills this condition.
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4 Choose a Majorana mass term that retain the periodicity of the soliton

As explained in section 3, the soliton returns to its original form after it completes two cycles while it is expected to

occur each cycle. In terms of the system eigenstate ¥ (q) = (u, v)T we have

u(g+L) _ u(q)
wg+L) \~v@)

where u and v are vectors that correspond to the PHS relation which appears in Eq.(22). The soliton would return to

(28)

its original form after one cycle if the eigenstate would be

U(q)
v(g) = L : (29)
-nlElvig
This can be adding to the Majorana mass term a branch-cut,
W) — (~DLEdwi), (30)

where the shift of floor’s argument is due to our demand that two counter propagating solitons would consolidate twice
in a cycle and their overlap would change smoothly. In a addition the new order-parameter assures us that the spinors
are single-valued with respect to the soliton displacement.

The connection between the desired eigenstate in Eq.(29) and the suggested Majorana mass term in Eq.(30) is made

by expressing the corresponding Hamiltonian as a similarity transformation,

H(g) = (Z(@T(@) H(q = 0) (T"(@)Z'(). G31)

where T was defined in Eq.(26) and Z = Z() @ Z® is a diagonal block matrix with

Zin = Sm,n» l<mn<2n+1 (32)
Zigw = Sma(-DLE] 1 <mn<on

Thus, the system’s eigenstates are y/(q) = Z(q)T(q)¥ (g = 0).
One may raise the question - why not simply to make the the Majorana mass term to generate a U(1) group, such as
W(x) —> e*™ 1 W(x). Actually we can consider a more general Majorana mass term, W(x) — e*@+DT L W(x) with

j € Z. The corresponding similarity transformation is

H(q) = (M@)T(@) Hig = 0) (T (@M (@), (33)

where M = M) @ M® is a diagonal block matrix,

My = Om,n» I<mn<2n+1 (34)
Mr(ri)n = 5m,neii(2j+l)n%, 1 <mn<2n.
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However, this transformation results unphysical eigenstates, ¥/(q) = M(q)T(gq)¢¥(q = 0) as it renders eigenstates of well

separated solitons to overlap.

5 Add the missing Majorana fermion

The spinor contains a single zero-momentum field and 2x pairs of counter-propagating fields with non-zero momentum.
The zero-momentum field is a Majorana fermion that is located on one of the junction edges. Its position will depend
on the parity of the number of vortices enclosed by the junction. A zero-momentum Majorana is found on every edge
that encloses an odd number of vortices (including both bulk vortices and solitons). Hence, when we have an odd
parity, the zero-momentum Majorana will be localized at the inner edge of the junction. On the other hand, for an even
parity the zero-momentum Majorana will be localized on the outer edge of the junction. A second zero-momentum
field, which is absent in our one dimensional effective model, is localized around the core of one of the bulk vortices
or at the edge that encloses the whole physical system, depending on the parity. Since our model is an effective theory
of the Josephson junction, the second zero-momentum Majorana is absent. Thus, in order to recover the PHS we need

to add, by hand, an uncoupled zero momentum field to our model.

In order to add a decoupled zero-momentum Majorana to our model we add a decoupled block to the Hamiltonian,

which is just zero. In practice, we use the transformation ¥ — P¥

with
In 0
P={0 0 (35)
0 Lyt

and I, is an identity matrix of dimension n.

6 Transform the two Majorana fermions into a regular fermions

As shown in section 1, fields of zero momentum are majorana fermions. In order to write the groundstate in Thouless

represetaion, we transform the two majorana fields into regular fermion fields, ¥ — TCY with

1 (1 1
T=1&— © Iz,. (36)

V2\-1 1
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7 Transform the Hamiltonian into a “standard' PHS form
We would like to transform the single particle Hamiltonian such that PHS would take the form,
— H = (1, K)H(KTy). (37)

where K is the complex conjugation operator. We limit ourselves to transformations that merely change the fields order
in the spinor, since we do not want to mix between fields that correspond to different momentums. These requirements

are accomplished by the transformation ¥ — WTCY with

Wi = O[2N20m L ON+1mod2N+14m 2 M S 2N +1 (38)

O[4Ng-m ] ON+2)mod(4N +4-m2),j» 2N + 1 <m
8 Representing our new Hamiltonian with a similarity transformation that
depend on g

The single particle Hamiltonian that correspond to a spinor of fermions with a PHS, H'(g) = (WTC)H(q)(CTTTW),

can be expressed as a similarity transformation of H’(0),

H'(q) = (Z(@)P@) H'O) (P'(@)Z'(@) . (39)

The matrix P = PV @ P? is unitary with

P = CDaemEt s  m <N+ 1 (40)
Pﬁ)n N L Smns M < 2N +1 (41)

and Z = Z) @ Z? is orthogonal with

Z0 = Z@ = (cpmedmdLEils, o om < 2N+ 1. 42)

9 Reversing the boundary conditions

As described in the remarks of section 1, by reversing the boundary conditions of ¢ and ¢ the single particle Hamiltonian
transforms as H — —H. Consequently, the transformations, P and T that adds a second majorana to the model and
then transform the two majoranas into regular fermions are kept unchanged. However, the transformation, W) that

brings the Hamiltonian into a “standard” PHS form is obtained from the former transformation, W by a circular shift
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of 2N + 1 rows:

O[222:1 4 Qna2ymodn+3-i,2),j | <20+ 1 .

Wi = 3)

O 51 1+(2n+mod(i,2),j Zn+l<i
Hence, the single particle Hamiltonian that correspond to a spinor of fermions with reversed boundary conditions and
PHS is
H®(q) = ~WOTOH@)C'T W), (44)

In addition, the reversed Hamiltonian, H®)(q) can be expressed as a similarity transformation of H®(0),
H®(g) = (2(@)PP(@)) HR©) (PP ()7 (9)) (45)
where P(® is obtained from P by interchanging its two blocks,
PR = (1, ® Lhy41) P (1x ® by41) = PP @ PV (46)

and Z = ZM @ Z(W is evidently unchanged.

10 The Geometric phase that groundstate acquire during the soliton’s mo-
tion
The Berry connection for a BCS many-body states is given by Read’s formula[2]:
. _ [ ToN—Ll7T 77 al
i(9410,92) = e ((1 Y AR VAV Z)) 47)

where |Q) is the many-body groundstate ,Z = (VU~")* and the columns of the block matrix (U V)T are eigenstates
that correspond to positive eigenenergies in an acceding order. Read’s formula can be brought into a more suitable

form for taking symbolically the derivatives,

*

1(Qy10,Q) = %tr [v*v’ ~v(vi) + (U*)" viv(v) -vivy! U'] : (48)

in which only derivatives of the matrices U and V appear.

The standard procedure for calculating the overlap between two many-body states assume that all positive energy
single-particle eigenstates, that form (U V)7, are related to the negative ones by the PHS operator, 7, K. However, it is
not granted that degenerate eigenstates would obey this relation and one must construct such states (as described in the
frame below, titled "Generating PHS zero-modes"). In order to construct the many-body groundstate, we choose the

zero-mode which leads to a non-vanishing determinant of U to correspond to a positive energy state (as explained in
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Figure 1: The geometric phase accumulated by the persisting Josephson vortex. The dashed (brown) line describes
the geometric phase accumulated by each persisting soliton in the presence of a vortex within the central region. In
addition, the solid (black) line describes the overlap norm of two counter-propagating solitons, which becomes non

zero at half cycles. At these points the geometric phase of each soliton acquires its universal values nz/16, n € Z.

the frame below, titled "Building the groundstate in the presence of zero-mode").

Using the procedure discussed above, we diagonalize H numerically for ¢ = 0 and using the translation operator
Z(q)P(q) we obtain the eigenvectors for any other position of the soliton. We substitute into Eq. 48, performing
the derivative symbolically. The result is presented in Fig. 1 with the overlap calculated using the Onishi formula,
Q4 194)] = /I det X, xq| With x, = T, xo and X = (U], V) [1] for two counter-persisting solitons, demonstrating
that the topological spin is in principle an observable. We repeated the procedure taking reversed boundary conditions
on the two Majorana edge states, obtaining the same phase but with an additional minus sign,which up to machine

precision is —m/8L.

Generating PHS zero-modes
Here describe a procedure to construct zero-modes which are related by the PHS operator. The PHS, H = 7. H* 1y,

assures us that two non-degenerate states with energy |e| > 0 are related by |€) = 7.K|—€). In the case of
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zero-modes, € = 0 we need to construct two orthonormal states that also maintain this relation,

vi) = alur) + bluz) (49)

[v2) = Tvy =al|lu) + bT|ua) (50)

where u; and u, are two arbitrary orthonormal zero-modes that fulfill (u;|T|u;) = 0, T is the PHS operator,
T = 7.K (K is complex conjugate operator). Moreover, #; and u; are simply

w = WTCu, 1)

w = WTCuj, (52)

where u| is the single zero-mode of H(g), and (u}); = 6; n+1 is the uncoupled zero-mode that was added to the

model. The requirement that v; (and v,) are normalized gives a constrain on a and b,
v =1= la?>+|b* =1 = a =|cosale®, b=]sinale?. (53)
The second requirement, namely, that the two zero-mode are orthogonal yields the following constrain:
Wilv2) = @ ui|T|w) + b*Qua|Tlua) + @b ((ur|T|uz) + (ua|Tlur)) = 0. (54)

Noticing that
a|T|ur) = (ui|T|uz) (55)

the relation can be further simplified,
(vi|v2) = @*A + B*B + abC = 0. (56)

where A = (u(|T|u1), B = (uz|T|uz) and C = 2{u;|T|up). Since C = 0, the constrain is simplified further to

Aa? + Bb? = 0 and together with the first constrain, |a|> + |b|> = 1 we get

1

2 _
la|” = [~ Ae )

57

withy — 8 = —%arg% +(n+ %)ﬂ and n € Z because |a| < 1. Since the zero-modes are defined up to a phase it’s
enough to determine the relative phase between a and b. Out of the infinite possibilities to choose the phases 8

and v, it is convenient to pick 8 = %argA and y = %argB.
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Building the groundstate in the presence of zero-mode
In order to construct the many-body groundstate, we start with the bare vacuum |Q) and multiply it by a product of
quasi-particle annihilation operators, ¢, with positive energy. In the end we multiply it with one of the zero-mode

operators,

1) = co. | | eq10). (58)

J

One of the two zero-mode operators would make the construed state vanish identically. This point is better

understood by considering the Thouless representation of the groundstate,

|Q) = +/|detU| exp

Zawmjm,2=www. (59)
i<j

When the groundstate vanishes identically, det U = 0 and since (0|Q2) = +/| det U] it means that groundstate is
orthogonal to the bare vacuum. In addition, det U = 0 means that U is singular and Z is undefined. Practically,

we identify the zero-mode for which det U # 0 as the annihilation operator and use it to contract the groundstate.
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Appendix C

How vortex bound states affect the Hall

conductivity of a chiral p = 1p

superconductor

1 The cylindrical argument function

In this section we adjust the argument function to a flat right-angled cylinder of circumference g, > 0, denoted by C.
In order to do so, we calculate the principal value of

24
/}im Z Arg (z + ingy), (1)
0 n=-2A

which turns out to be convergent in R/2xZ. Furthermore, the infinite series converges into an elegant expression.
Thus, we define it as the cylindrical argument function:

¢ (zigy)= P.(V.ZArg(anqy) =Im [Log sinh (B)] . )

qy

n=-—o00
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Derivation of the cylindrical argument function. We consider the following series in R/nZ,

A . A
Z Arg (x +i (y + ngy)) = % Z [Log (x —i (y + ngy)) — Log (x +i (y + ngy))]
n=—A n=—A
. A
E’E Z [Log (iZ + n) — Log (iz+n)]  (mod ), 3)

where z = 22

&
Recall that for any z € C

o[ (1+ ek, @
n=1

it follows that

2 z
1-Z)en 5
rore <[J(1-7) e ©
On the other hand, Weierstrass factorization theorem states that
Sln(ﬂ'Z)—ﬂ'Zl_[(l——) en. (6)
n#0
Combining the above yields
1 zsin (7z)
=- : )
I'(z)T(-z) b
Plugging this into the identity in Eq.(95) and applying it to Eq.(3) yields
A
Z Arg (x +i (y + ngy))
n=—A
i Z sinh (77) I'l+A+iz)T(1+A-i7) Z
= — |Log|————=| + L —Log|- d
2 [ o5 (z sinh (ﬂz)) o8 (F(l FATi T+ A &) (medm
i sinh (77) Frd+A+iz)T(1+A-iz)
= — |Log|————=| +L d 7). 8
2[0 (sinh(nz))+ 0g(F(1+A+iz)F(1+A—iz) (mod ) ®)
We now note that
- FTA+A+i)T(1+A-i7)
Ao T(1+A+i)T(1+A-iz)
Thus,
i smh(q—z)
11m ZArg (z+ingy) = = Log 2 (mod ) 9)
2 sinh(ﬂ)
qy
=L (Log sinh (E) —Logsinh (E)) (mod ), (10)
2 dy qy

where here z = x+iy. In addition, in our last step we performed a lift so the infinite sum would converge into a
function that is well defined in R / 27, Just like the argument functions.
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While ¢ (z, qy) itself is not well defined on the cylinder C, it serves as a building block for multi-singularity
configurations,
0°() = > mo© (2 - zigy), (11
i
that are igy-periodic modulo 2. Here z; € C and n; € Z are the displacement and class of the i singularity,
respectively. In addition, we have the selection rule,

D ini=0, (mod?2) (12)

1

that determines which multi-singularity configurations are supported by the cylindrical topology.

Derivation of the selection rule. We aim to check how the cylindrical argument function transforms under
X = X+ gy

T

Log sinh (l(x +iy+ iqy)) = Log (e%(priy”q” = e’W(x”y”‘ly)) ~Log2 =
4y
Log [ei” (equ(“iy) - [%(“i”z"‘b))] —Log2=Log [ei” (equ(“iy) - efqu(x”y))] —Log2+in(2n+1)

Thus, we find that ¢€(z + iqy,iqy) = € (z, iqy) + m. This is in contrary to our exception that the phase function
¢€ (z, gy) would be igy-periodic.

An example of a configuration that results a ig,-periodic phase field is the placement of a single vortex anti-vortex
(V-AV) pair on a cylinder,
©(2) = ¢ (2~ z1,iqy) — ¢ (2~ 22.igy), (13)

with z, z1, 22 € C.
The cylindrical argument function can be generalized to support periodicity along any axis, C/Zt by substituting
qy = —it in Eq.(2):

¢ (zT) = P.V. ZArg(z+n‘r) = Im[Log sinh(?)] R (14)
n=—o00
where z,7 € C and z = x+iy. The norm || stands for the cylinder circumference while the phase Arg(r) represent
the angle between the periodic boundary condition axis and the x-axis. In addition, the cylindrical argument function
obeys the relation ¢€(z + 7,7) = ¢C(z, 7) + « and thus the selection rule in Eq.(12) holds also for acute-angled flat
cylinders.
The name "cylindrical argument function" is justified by the fact that on one hand it is a singly periodic function

and on the other hand it approaches the argument function in a vicinity of a vortex, ¢ (reiq’, 7) —0> @.
r—

2 The toroidal argument function

In this section we adjust the argument function to a flat right-angled torus of circumferences ¢, g, > 0, denoted by T'.
In order to do so, we calculate the principal value of

24
Ai_rgo Z Arg (z + mqy + ingy)
m,n=—2A
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which turns out to be convergent in R/27Z. Furthermore, the infinite series converges into an elegant expression.
Thus, we define it as the toroidal argument function:

. 2 2
o7 (2. s —igy) = P.V. hm Z Arg (z+mgy+ingy) = Im[Log(zﬂl( 1qx )) & arctg(q—x)], (15)
m n=-2A qy qy qxdy dy

where gy, gy, > 0 and arctg is the arctangent function (with an image in [-7/2, 7/2]).

Derivation of the toroidal argument function. We consider the following series in R/nZ,

A A A
Z Arg (x+qu+i (y+nqy)) = Z Z Arg (x+qu+i (y+nqy))), (16)
mn=—A m=—A \n=—-A

where we choose to first sum over n and only then over m. Applying Eq.(8) yields

Z Arg (x + mqy +i (y + ngy))

m=—A \n=—A
A . . - . -
i sinh (7Z,,) T(1+A+iZn) T (1+A—iZ)
2 |8\ sih iz d 17
MZA 2| (sinh o | T O\ T ATz T xAiy) | 97 (W7
where z,, = ’%j”y. We start by considering the following sum
A . - A . -
h h
ZLog(M)ELOg( n w) et )
=, \sinh (z) L1 sinh(nz,,)
It holds that
ﬁ sinh (71Z,) ﬁ eTim _ e—ﬂim 2720 _ o720 ﬁ o~ 27 Zm )\l o Z-m (1 — 27 %em )\|
L sinh (ﬂzm) B L L emom — g 7Em T on% —enZ0 m:O eirzm e—anm)) e~ TZm (1_627rz_m))
 sinh(rzg) Ay (1 e720n) (1 2E) 18)
~ sinh (nzO) (1 - e2mzm) (1 - 627rz m)’

Using Eq.(83) one checks that

ix+y iqx+qy iq
iy U3 ( T S,

l—[ sinh (7TZm) — e b qy 29y’ qy
sinh (7z,,,) » (ix—y igx+qy iy ) ’

=— LY o, ZEP X

m==eo 03 dy 29y’ qy

It follows that

(52 4 e )

o) . h 2riy 2 ’
i Log S8 (TZm) _ Log| e % o ay 4y (mod 7).
2 Z_ sinh (7z,,) ] ~ 2 9 (ﬂ igx+qy &)
m=—oo 3 + = > gy
qy qy 4y
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‘We now turn to deal with

T(1+A+iz,)T(1 +A—izm))

A
1i L .
B 2 Og(F(1+A+izm)F(1+A—izm)

A—o00
m=—

In what follows, we assume that for any A € N

= lim

A—00

A . .
T ZL (T(1+A+lzm)r(1+A—lzm))

A
/ T+A+iZu) T(1+A—iZ,)
0g : - L
F(1+A+izy) T(1+A~izm)

E\T(L+ Atizn) T(1+A—izm)

Recall from [2, Eq.11] that the for any z € C with Re (z) > 0 it holds that

%

/Logr (x)dx =

0

(I_Z)Z Z ’ ’
5 +§ log(2m)-¢"(-1)+/(-1),

where {(s) and £,(s) are Riemann zeta and Hurwitz zeta functions ,respectively. We write

A
i (A):/LogF(A-H—w)dm,
dy
-A
A .
]2(A)=/L0gF(A+l+w)dm,
dy

A
Js (A) = /Logr(A+1+’(x+’ZM)dm,
y

A
Ja(A) = /LogF(A+l—w) dm.
qy

Inserting these and Eq.(20) into Eq.(19) and taking the limits A — oo yields

fiLog I“(1+A+l:Zm) F(1+A—z:2m) _ Ay
2 T(1+A+iz,) T(1+A-iz,,) qx9qy

arctg (q—x) (mod 7).
dy

Combining the parts, reveals that the infinite sums converge into an elegant expression:

A A
lim Z Z Arg (x+qu+i(y+nqy)) =

A—co

m=—An=—A
. 9 (ﬂ ”i_x) 4
L Log DWW 2 arctg (q—x) (mod x) =
2 9 (zx—y th) qxqy qy
dy

» : 4
[Log ( ix— qu)) —Log(iﬁl( ix+y lq_x))] =2 arete (q_x) (mod 7) =
qy qy qy dy dxdy qy

= 4x
Im[Log( ( ix+y qu))] yarctg( ) (mod 7).
dy dy x4y qy
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In the calculation above, we used the transformation rule in Eq.(88) to represent the expression in term of the first
Jacobi theta function. Then, by using the logarithm product rule, we assured that the principal value of the infinite
sum converge into a function that is well defined in R/277Z, as discussed in Appx.(5.1). Our last step was to use the
identities Eq.(89-90) in order to represent the results as an imaginary part of a compact expression.

In the derivation of the toroidal argument function, we performed the sum over n and only then over m. In other
words, we first “folded” the plane to a cylinder about the x-axis and then “folded” the cylinder to a torus about the
y-axis. We now describe the result of “folding” the plane about the y-axis first instead. Naively, one may expect that it
would merely be equivalent exchanging between the two sides of the rectangle, g, <> ¢, but this shows up to be not
accurate. Summing first over m and then over n, when calculating ¢7 (z, gx, qy), would yield

2A 2A 2
2
lim E E Arg (z + mqy +ingy) | = Im [Log(n?] ( < qy)) +—Z arctg(q_y)] - E. 27)
A_)oon:—ZA m=-2A qx 9x qx4qy qx 2

A comparison of Eq.(27) with Eq.(15) reveals that not only ¢, and g, are exchanged, there is also a rotation of the
coordinate system by 7 counter-clockwise, z — &' Tz

Derivation of the toroidal argument function when folding order is reversed. We expect that reversing the order
that a plane is folded into a torus would result an exchange between g, and g,. Thus, we use the identities in
Eq.(89-91) to establish the following relation:

G B 2 . .
9 (x+ly 1%) [T ) g, (_l“y,%),
qx qx 61y ‘1y qy

Next, we manipulate the relation and obtain that

. N . 2 . .
—ix + sixty + iqy
Im [Log (iﬂl ( ad y’ %))] =Im [Log (i2 qy x( ay ) ) (x ly, ﬂ))] =
9y 9y qx qdx qdx
L )
Xriy, i))] £ I T nod om).
qdx qx qxqy 2

(28)

Im [Log (iﬂl(
We insert it into Eq.(15) together with the identity arctg (Z—;f) = 7 —arctg ( ) to complete the derivation.

As the cylindrical argument function, the toroidal argument function ¢” (z, gx, —iqy) also does not share the same
periodicity as the torus 7', .i.e, it is not A-periodic, where A = g,Z +iqyZ and gy, g, > 0. However, it serves as a basic
building block for constructing phase fields that are well defined on 7. Given a singularity configuration,

m—1
o7 () = Z kid" (z = 2, qus —igy) - (29)
i=0

where z; € C and k; are the displacement and class of the i singularity, respectively. For any flat right-angled torus
of the form A = g.Z + iq,Z, the multi-singularity configuration @7 (r) is A-periodic iff

m—1 m—
ki = kizi =0. (30)
i=0 i=0
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So far we discussed argument functions and multi-vortex configurations on a right-angled torus. In certain instances
it is beneficial to describe them on a acute-angled torus, i.e. a flat torus of the form C/(Zt| + Z1,). Rewriting Eq.(15)

with a change of variables, g = 71 and ¢, = —i1, yields a toroidal argument function that is suitable for any flat torus:
A T 2iz? it

" (11, 12) = P.V. lim Z Arg(z + mty + nm) = Im[Log(iﬁl -, —1) — ——arctg =t ] , (31)
A =24 T Df) T T

where 71, 7, € C span a parallelogram and satisfy Im(7; ) > 0 (since the first Jacobi theta function converges only
when —7; /7, is confined to the upper plane). Furthermore, arctg(z) is defined on the whole complex plane by an
analytical continuation (see Appx.(5.2)).

The name "toroidal argument function" is justified by the fact that on one hand it is a singly periodic function and
on the other hand it approaches the argument function in a vicinity of a vortex, ¢ (rei"’, ‘r) Tj o.

We note that 7, is a mediator of scalings and rotations on the torus. Any combination of such operations can be
viewed as multiplying z by re!® € C* (which yields a scaling by r > 0 and a rotation by an angle of §). We note that it
holds that

) 1 .1 .
T (re’ez, T, Tz) =g¢! (z, ;e"a‘r], ;e"g‘rz . (32)

Namely, rotation of z by 6 and scaling by r is equivalent to a rotation of 7; and 7, by —6 and a scaling by }

The generalized toroidal argument function ¢ (z), which itself is not A-periodic, serves as a basic building
block for constructions of multi-singularity configurations, ®7 (z) that are A-periodic. Given a flat torus of the form
A = Z7| + Z7, and a singularity configuration,

m—1
e (r)= Z ki¢" (z - zi11,72) - (33)
i=0

where z; € C and #; are the displacement and class of the i singularity, respectively. ® (r) is A-periodic iff

—_

-1 m—

ki = Z kizi. (34)

i=l

3

Il
o

i

Derivation of the generalized selection rule. We begin with examining how @7 (z, 71, 72) transforms under
2= 7+

2. + 2 .
¢ (2+ T, T2) = Im[Log(iﬂl (£+ 1, —1))—Marctgﬂ =)
TZ Ly T ™
2i(2z +
¢" (2,71, 72) +7—Im [Marctgﬂ] (mod 27).
T v

Next, we use the result to analyze how a multi-vortex configuration, ®7 (z, 71, 72) transforms under z — z + :

m—1
0 (2415, 71,12) = O (5,11, T2) +7 ) i (35)
i=0
4i " 2it, " it
—Im{[= > ki(z=z) + == ) ki |arctg— | (mod 27). (36)
5% 2 T2
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Demanding @7 (z, 11, 72) to be T, periodic for any z € C leads to the following requirements

m—1

S

. (37)
Im [—arctg( ) Z k,z,] =0 (mod 2r).

We now turn to examining how &7 (z, 71, ) transforms under z — z + 11,

+ 2i(z+11)?
O (z+71,7T1,T2) = Im[Log(zﬁl(Z il 1)) - M
p

arctgﬂ] (mod 27).
2 ) Lyl )
By using the identity in Eq.(92), we check how ¢ (

=L ) transforms,
T2

91(z = 7,7) = e TG (7 1) = 191(— 71 __) _ 2z+-r]+l (_ __)
and together with
Im[Log e ] =Im [m—zz +:2‘ S nod 22),
we find that

2z+ 1 + 1
' z+1,1,12) = ¢" (z,71,72) + Im|7

4iz+2i [
_ A arctg(ﬂ)] (mod 27).
™ Iyl T

2
Our next step is to analyze how a multi-vortex configuration, ®7 (z, 71, ) transforms under z — z + 7

O (z+T1,T, 1) = o7 (z,71,72) + Im [(ZTI (71 2arctg ) + lﬂ') Z ki+
™

2i ir
+—2 (7T 2arctg ) Z ki(z -z ] (mod 27)

Demanding ®7 (z, 71, 1) to be 1| periodic for any z € C leads to the following requirements

m—1

Sih-

i=0

(33)

(39)
2
Im[_r2 (7r Zarctg )Z ki zl] =0 (mod 27).

Combining the conditions above gives a selection rules

m—1
ki
i=0

Imlj—larctg(‘ )Zklzl} =0 (mod 2n),

Im[z (7T + 2arctg( )) Zk, zl} =0 (mod 27),

0,

(40)
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which determine whether a multi-vortex configuration, ¢ (z, 7) is A-periodic. The configuration would be periodic
with respect to any flat torus, regardless to its circumferences, iff

m—1 m—

Dki= > ki, 1)

1= 1=

which coincide we the selection rule for a right-angled flat torus.

Next, we consider the multi-vortex configuration,
3 .
0"(2) = D (~1)¢" (2 - 21, 2) 42)
k=0

where two vortices with winding number +1 are located at opposite corners of a parallelogram and the second pair
of vortices with the opposite winding number are located at the other opposing corners. The selection rule reveals
that this multi-vortex configuration is A-periodic regardless of the torus dimensions. In addition, it is the minimal
configuration of vortices with a single winding which is A-periodic.

The selection rule allow a parallelogram to spread over a few tiles. In addition, a vortex that is placed in one tile
would also appear in all the other replicas. Hence, the selection rule is actually less restrictive then it seems at first
sight, making it for applicable to many scenarios.

3 Placing a single V-AV pair on a torus

One might hold to the notion that it might not be possible to place a single V-AV pair on a flat torus. However
we would like to suggest evidence to the contrary. The toroidal argument function consists of two terms. The first
term encodes the singularities completely, while the second one only enforces the selection rules. Furthermore, for
supported multi-singularity configurations the second term amounts to some constant, which donates only to some
globally fixed phase.

In other words you would suspect this second term can be eliminated with extreme prejudice. This is not completely
true, since the periodicity still need to be enforced on the torus. Thus we are free to replace this second term with an
equivalent term, that enforces them. A simple ansatz that recovers the single-valuedness (mod 27) of the phase field is
07 (z) = ¢""(z, wo) — ¢7 (z. wy) with

) - 27z R

s W)Elm[mg(iﬂl (u,_f_l))+£M], 43)
n ) 7w Im(n/n)

where the second term ensures it is single-valued (mod 27). Any multi-singularity configuration that obey the selection

rule in Eq.(41) is the same (up to constant) regardless to the building block that was used.

Asserting the periodicity of the minimal singularity configuration.

)51(Z—W1 Tl))] .\ 2n(z +11) Re(on—zm) _

+ J—
, ) Im(%)

_—

Ly )

0" (z+1)=Im [Log(ﬁl(z_wo O
.

Ly

Wo—wj

z2—wo z—W1) 27y Re(=5

— ol
- Im(:—;) =0 (z) (mod 2x)

0" (z) + Im [27ri (

L) ™
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where in the second step we used the relation 94 (z — 7, 7)91(z’ — 7, 7) = 1 (z, ) (2/, )27 @2,

) Re(¥=)
O7 (z + 1) = O (2) ~ Im (—2) — 2 -0"(z) (mod2n) (44)

) Im(g)
where in the second step we used the relation 9(z + 1, 7)9(z’ + 1, 7) = 9(z, 7)1 (z’, 7).

We would like to compare between the toroidal argument functions appearing in Eq.(31 and Eq.(43). A calculation
of the supercurrent flux through the parallelogram sides, 7; and 7, (or any parallel dissection) for a V-AV yields:

2. wow
—lm(rfr/mRe(_n 1)’ T

2>t [Im(WnT—zwl) + Re(W()_W]) Re(Tl/Tz)] . T=1 ’

72 ) Im(71/72)

L)
(45)

o) = /dz ) (Ex?) =

This calculation reveals that multi-vortex configuration satisfying the selection rule in Eq.(34) do not produce super-
current flux through the parallelogram sides.

Calculation of the supercurrent flux through the parallelogram sides. We start with the first term ,which encode
the singularities:

t=1

/ dt |R’(¢)|VRIm

Log(iﬂl (—Z(R(t))))] -(ZxT) =

)
=0
: R I R
Im / dr || VRLog(iﬂl (Z( (t))) JES Rer))| (46)
£y 7]
0
1 1
Im /dt d,Log (iz?l (it))) (1,7)-(-Im7,Re7)| = Im /dt azLog(iﬁl (@)) it
T T
0 : 0 2
20+T 0

_Jz=zot+Tl| _ z T _ g T="7
B {:> dz = Tdf} - Re /dz 6zLog(01 (Tz’ Tz)) ) {_ﬂlm(zzgﬂ)’ T=7’ L

20

where R = (Re(z), Im(z)), z(f) = zo + 7¢ and 7 = (Re(7), Im(7)). Therefore, for a single V-AV pair the super-current
flux through a line parallel to the parallelogram side 7; is

s 0, T=T7
bu(0) = [at IRO1ILR@) -2x7) = sim(m2) £ (48)

t=0

where the super-current density is

Ju(R) = VgIm [Log(ﬂl (Z(R)_WO) & (Z(R)_Wl))] (49)

) L)
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Now we turn to analyze the second term which is oc Im(z/1,):

\ 1
Im(i /dt [R'(1)] VRz(R(7))- (2 % f)): Im| - /dt Il M)
” 0 (v 4

|7|

1
1
. —/dt it :Re(l) (50)
() )
0

For a single V-AV pair the super-current flux through a line parallel to the parallelogram side 7; is

t=1

- Re(t;
i) = [ar RO TR - () = 2ee( M=) BT (51)
; ) Im(11/72)
t=l
where the super-current density is
Re(#-1)
J»(R) = 27VRIm @ —Tz (52)
7 ) Im(Z)
4 Superconducting flat torus
We suggest a general multi-vortex configuration takes the form
0'(2) = ) ko (2 2, (53)

where k; € Z is the winding number that characterize the i vortex and z; is its position. The fundamental building
block, which differs by a smooth function from the toroidal argument function, is given by

L ~ (- T 2\ Im’(z/m)Re(r1/m2)
@)=t Log(lﬂl( n Tz)) +que(Tzn) Im? (r1/72) (54)
”Imz(Z/Tl)Re(Tz/T]) . Im(z/71) N [27rRe (z_o) _n] Im (z/712)
Im? (12 /7)) Im (2/71) ) Im (11/72)°

where ¢; represents the number of lattice sites along 7; and ¢» = ¢; + 1, which is necessary in order to maintain
the single-valuedness (mod 27) of ¢ (z, z0) at every lattice point, z,,,, = (m/q1)t1 + (n/q2)T2 With m,n € Z - i.e.,
S (Zmn + Ti» 20) — $F (Zum.n» 20) = 0 (mod 27r). Furthermore, integrating the supercurrent, J o (%Vqﬁl‘ - A) along the
parallelogram, spanned by 7| and 7, reveals that

0:‘7{J-d€ocNCI>0—‘7§A-dl’, (55)
and due to Dirac quantization condition (2723;& € Z), N = }; k; must be an even number.
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Proving that ¢*(z, zo) is single valued (mod 2n) at the lattice sites. We start by examining how each one of the
first three terms in ¢ (z, z9) changes as we circulate around the torus holes:

- b
H (z+a+br,t)=explin(a — b2z + bt + 1)]1(z,7) = (M, —1)
Ly Ly

exp [iﬂ' (a +b (ZZ — + bl + 1)) I (z, T)
Ly Ly
z—zo+an+bty T Z—-20 T (56)
= oo o (=222 2 o o (<523 )|
Ly Ly T Ly
n(a — b) +2nbRe (Z — Z0) + b’ Re (ﬂ)
Ly ]
2 2 T2
Re (M) —Re (Z—) = 2bRe (ﬂ) + 1’ Re —1) — 2bRe (i) + b’ Re (ﬂ) (57)
T T T T Ly Ly
2 2 2
Re (M) —Re (Z—) =2aRe (ﬂ) +a*Re —2) =2aRe (i) +d’Re (2) (58)
T T T T T T
z+ bt z \1? z z w7 7
Im? (—1) = [Im (—) +bIm (—1)] = Im? (—) +2bIm (—) Im (—‘) + b Im? (—‘)
™ 1 ™ ™ ™ ™ 1 (59)
_ Rez(‘rl/‘rz) [Imz (z + bn) 2 ( z )] _ 2bIm@/r)Re(m/m) | pap oy
Im” (71/72) ™ L5} Im (71 /72)
Thus, the function ¢(z, zo) changes by
L L z 2 ! 2 T
¢~ (z+br)—¢"(2) = (g1 + 1)2nbRe (—) +7b”(q1 + 1)Re (—) —ngrb” Re (—)
T Ly T (60)

_ 2rngabIm (z/m)Re(11/12)
Im (71/72)

(mod 27),

as we circulate along 1. For the case that g, = g + 1 we find that ¢*(z, zo) is single-valued (mod 27) at the lattice
sites, Zmn = (m/q)71 + (n/q2)72 with m, n € Z,

L _ 4L _ Zﬂ _ Re (Tl /TZ) Zmn
&~ (zmn + b11) — ¢ (2mn) = 27 q2b [Re( - ) ey Im( - )] (mod 2r) 61
=2rnb (mod27) =0 (mod 2nr).
In addition, the function ¢(z, zg) changes by
L _ 4L _ Zmn)| _ Re(na/71) = (Zmn
O (Zmn + at2) — ¢ (Zmn) = +27q1a [Re( . ) T oy Im( . )] (mod 27) )

=2mma (mod2xr) =0 (mod2n)

as we circulate along 7, and therefore single valued (mod 27) at the entire space.

Next, we introduce a complementary vector potential. Due to the boundary conditions, the supercurrent is required
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to be doubly periodic, J(z + 7;) — J(z) = 0. In addition, we want a homogeneous magnetic field, V X A = const. Thus,
the complementary vector field needs to fulfill the condition

: D
A+ =A@+ Pv (63)
qi nqi

where y;(z) = ¢L(z + ;) — ¢L(2) fori = 1,2, p = [N/2] and Vy; = const. In addition, we take i = ¢ = ¢ = 1 and
thus @y = hc/(2e) = n.

The condition in Eq.(63) assures us the following:

1. The flux through each unit cell is quantized,

2pd,
# dS(V x A) = 2P0 (64)
qi(q1 + 1)
Proof: . .
Zm,nt > Zm,nt g
jﬂA.df = / ” [A(z + Iy _A()|-ae +/ " [A(z) A+ 2y|-de =
Zm,n q1 R q2
Zm,rﬁLz zm,nJrLl Zm,n+1 Zm+l,n
P a2 Vyi-de - ' a1 Vys-de = ﬁ){l(Z)] — EXZ(Z)] — (65)
91 Jz,n 92 Jzmn q1 oD q2 Zm,n

@-4q1 _ 2rp
a2 qi(qi+1)

11
2xp(— — —) =2np
q1 q2

2. The phase factors in the Peierls substitution method are single valued:

/ZmMTZ [A(z +71) ~ A(2)]-d¢ =0 (mod 27)

m,n

Zimont - (66)
/ " A+ 1) - A@R)]-df =0 (mod2n)
Zm,n
3. The flux through the torus surface is quantized, # dS(V x A) = 2pd,.
Proof:
Zm,ntT2 Zm,ntT1
j{ A-de = / [AG + 1)~ AR)]-4f + / AG) - Az +12)]-df =
Zm,n Zm,n (67)

Zm,ntT2 Zm,ntT1
p/ Vxi-df —p/ Vx2-dl = 2np(q2 — q1) = 27p.
% %

‘m,n ‘m,n

4. When the winding number around the magnetic unit cell is even, a translation by a lattice vector, 7; would amount
to applying a gauge transformation,

Y(z) = M;(2)¥(z + 73), (68)

where W'(2) = (¢7(2), ¥(2)) is a particle-hole spinor and M;(z) = ¢~“=Xi(2)/2 are translation operators which
commute with each other, [M;, M,] = 0.
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We notice that y»(z) can be obtained from yi(z) by exchanging the indexes 1 «— 2.

f+l'§) RC(T1/T2)Im()3+i)A/)

Vxi(2) = 2nqn [Re (

) Im (71 /12) ™
B 1 Re (11/12) 1Y) . 1 Re (1 /Tz)
‘2”"2[(“’(?2)‘Im(n/rz)lm(?z))x‘(Im(r_z)+1m<n/rz> ( )H ©9)
= 2% | [Rer - po( 0 m (e £+ (1m (e + o IR 1) 5
9263 Im (7172) Im (

where in the last equality we used the relations

i 1
Re 4 ——Re (7;) = —=Re(1y),
P |2 2
i T qi [1 (70)
Im(ﬁ) = IIm(#) = ——Im(@),
T |7l gic

i iC;

and ¢; = |1;/q;| is the lattice constant in the 7; direction. Based on Eq.(63), we construct the vector potential A(z) as
follows:

1) = 22 (T S o ) -
Imf’;—ﬂ (Va(@)Im (z71) — V1 ()Im (7)) = a1
| 2®ppIm (z7;) Re (7;7)) ) L Re(niy) o
= |Elj|Im( zT/)Qz (R ( )+ Im (TIT,)Im(Tl))x+ (Im(Tt) Im (T_iTj)Re(Tl)) y]’

where i, j € {1,2} and ¢;; is the Levi-Chivita tensor.

Let us check that indeed the curl of the magnetic vector potential A(z) is as we expected:
B(z) = (VX A), = 0xAy — 0yAx =
20p Re (7i7))
Im (7;7;) gic? [(Im (Ti7))
2Qopgi _ _2%Pop
Im (7_'1'7']') Im(fITZ)

€

Re (7;) = Im (;) | T ) — [Re (; MI(AR(A]
e‘r,)—m‘rl)) m('r,—(e‘rt)+lm(_i j)mTt)) e(r;) 72)
20Qpp

Im (7112)

= —|e;jl (@2 —-q1) =

In the simple case of a rectangular lattice with the distance between nearest neighbor lattice sites taken to be unity,
7, = qand 1y = i(q + 1), we have,

-20 . ¢ ))] 27Txy+27ry0x LESES)

L
) 'y I L 0 —
(SR eD) = m[og(ll((wl) g+ g+1 g+1 q g+1

(73)

X
A =20 =5
(x,y) 0P(q+] qy)
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5 Intermezzo

5.1 Lifting of arctg
For z = x + iy = re!? € C* the principal value of the logarithm is given by

Logz:=1Inr +i6, (74)
where 6 is taken in (7, 7]. It can also be written in terms of the principal value of the argument function, Arg: C\{0} —

R/27Z,
Logz =1In|z| +iArgz. (75)

This connection can also be written in terms of the principal value
Argz = % (Logz —Logz) = Im[Log (z)] . (76)
Hence, the function atan2(y, x) can be represented in terms of the Argument function,
atan2(y, x)=Arg(x+iy)= %(Log(x—iy)—Log(x +iy)). 77

In a similar fashion, we represent the arctangent function as,

yy_ i x—iy
arctg (;) =5 Log(x " iy)' (78)

Comparing the two representations, we notice that the product formula of the logarithm can be used to lift of arctg (f—c)
to R/2nZ,

R2 arctg( Y /

atanz(m lLog product formula - (79)
2

nZ

This trick is used throughout the article to lift the toroidal and cylindrical argument functions into R/27Z.

5.2 Analytical continuation of arctg

We take Eq.(78) and substitute z = y/x. We then perform an analytical continuation of arctg by extending its domain
to the whole complex plane, z € C,

arctg (z) = = Log (1 i Z) . (80)

6 Special Functions

6.1 Jacobi theta functions

Here, we only introduce the theta functions which are used in the paper together with their relevant properties. There are
anumber of notational systems for the Jacobi theta functions and it is the notation given in Whittaker and Watson[3, 4, 5]
that we adopt.
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ii.

. The third Jacobi theta function

For any z, 7 € C such that Re 7 > 0 we define the third Jacobi theta function to be

(e

(e8]
03 (Z,T)z Z enin2T+27rinz — Z anWZn,

n=-—00 n=—o0o

where g = ™ and w = ¢™'2. The third Jacobi theta function satisfies the following properties:

« [t is quasi-periodic,
M (z+a+br,7)= e’"isz’z"ibzﬂg (z,1) Va,beZ.

« It is presented by Jacobi triple product formula,

00

N (z,7) = l_l (1 - qu) (l +w2q2m‘l) (l + w_zqzm‘l) .

m=1

« It supports the transformation 7 — —!/,,

1 x;
h (%’_;) = (—it)? ¥ 05 (2, 7).

1

« Zeros of 93 (z, T) occur when z € (Z +3

) T+7Z+ % « It is anti-symmetric with respect to z,
P3(z,7) =9 (-2 7).

* It transforms under conjugation as follows,

P3(z,7) = (Z,-7).

The first Jacobi theta function

For any z, 7 € C such that Re v > 0 we define the third Jacobi theta function to be

oo o

H(z) = —i Z (_l)nq(n+1/2)2 exp((2n + 1)ing) = —i Z (_l)nq(n+l/2)2wzn+l’

n=-—oo n=—oo

where g = ¢ and w = ¢™'2. The first Jacobi theta function satisfies the following properties:

* The first and third theta functions are related:
l7ri‘r+7ri(z+§) 1 1
% (e7) = et P3|+ S+ 5T,

« It is symmetric with respect to z,
H(z7) = —h(-z 7).

« It transforms under conjugation as follows,

N(z, 1) = —-h(-Z,-7).
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© It supports the transformation 7 — —!/,,
. z —1 L\ Lomga2
i |=, — | =(=it)2e7"* (2, 7).
T T

« It is quasi-periodic, '
791(Z +a+ bT, T) — em(a—b(2z+b‘r+l))ﬁl(z’ T)

* g-series representation for its logarithm ,

ei 2ntk

s 2
m Sin (kZ)

Log #1(z,7) = Log(¥1(0, 7)) + Log(sin(z)) + 4
k=1

* g-series representation for its logarithm derivative,

i2ntk

9{(z,7) - e
1 2 .
COt(Z) +4 2 l—em SIH(ZkZ)

(1)

6.2 Hurwitz and Riemann Zeta functions

For any ¢, s € C with Re (¢) > 0 and Re (s) > 1 we let the Hurwitz zeta function be

o 1
gq(s):;(q+n)s'

6.3 The Gamma function

I'(z) :/ x¥le™ du,
0

*Forany A € Nand z € C\ ({0} UZ") it holds that

A
Z Log(z +n) = Log

(F(A+1+Z)F(A+l—z)
n=—A

I'(z)T(-z)
Derivation. We first note that due to the recurrence relation of I' it follows that

F(z+A+1))

A
;)Log(z+n) :Log( e
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) —Logz+Log(-1)**"  (mod 27i)

oD

92)

93)

94)

This series converges absolutely and for any ¢ it defines an analytic function in s that admits a meromorphic continuation
to C \ {1}. Taking ¢ = 1 yields the Riemann zeta function £ (s) = ¢ (s).

The gamma function is defined for all complex numbers except the non-positive integers. For Re(z) > 0, it is defined
via the integral:

The recurrence relation zI'(z) = I'(z + 1) can be used to extend the integral formulation to all complex numbers z,
except the non-positive integers. A useful identity that is related to the Gamma function is:
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It then follows that

A A
Z Log(z+n) = Z (Log(z +n) + Log(z —n)) —Logz
n=—A n=0

A
= Z (Log(z+n)+Log(—z +n) + Log(-1)) —Log z (mod 2ri)
n=0

3 (F(A+1+Z)F(A+1—Z)
I'(z)T(-z)

) —Logz +Log ()" (mod 27i)
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Appendix D

Calculating the overlap between HFB wave

function

1 The HFB wave function

The Hartree-Fock-Bogoliubov (HFB) wave function, |®) is merely a representation of many-quasi-particle state as a

vacuum with respect to Bogoliubov quasi-particles operator !, ce:
ce|®) =0, foralle > 0. (€))
We note that it’s always possible to construct a groundstate that fulfill this condition:

@) = [ [ eelo) 0)

e>0

'Bogoliubov quasi-particles are related to particle operators by a linear transformation that diagonalizes a single-particle Hamiltonian with a

particle-hole symmetry (PHS) of a system in consideration
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2 Thouless representation of the HFB groundstate

The HFB groundstate can be represented as
Q) = Aexp (Z Zijw! w}') 10) 3)
i<j
where y; is a fermion annihilation operator satisfying y;|0) = 0, Z;; is an skew-symmetric matrix and A is a nor-
malization constant, assuring us that (Q|Q) = 1. This representation is known in the literature as the Thouless

Representation| 1, 2].

Proof:
The similarity transformation that diagonalizes a Hamiltonian that posses a particle-hole symmetry (PHS) is Hgiagonal =

PTHP where the unitary matrix P has the form

u v
P = _ “
vV U
and the columns of (U V)T are eigenstates that correspond to positive eigenenergies in an acceding order. Thus, the
annihilation operator of quasipartices is

ce = ) (OLyi+Viu)) 5)

The groundstate must obey c¢|Q2) = 0 for every € > 0 so we need to find a matrix Z;; the will fulfill this requirement:

ij

_ S 1 .
celQ) o Y (Ohyi + Vi) exp (Z Ezi,-w;w;) 10)

i

1 ) _ _ _
= exp| D 5 Zipu v | D (UL + VEu! + Ul Y Ziw)Io) ©)
] i J
1 R B}
= exp (Z Ezijwzll/j) Z(VET,. + Z UET_,Zji)lPZ|0> =0
ij i J
_ 3 Zijylv] T Zijuly) o 2 Ziwly] T Zijuu; _
where used the relations [y, e?</ 1=0 i€ and [y, e'~/ 1 =0y, e~ which are valid for
k

a matrix Z;; that is a skew-symmetric2. The last equality is true only if

VE+ Y 0525 =0= 4V = Y 205 =V =20 =0=Z=(VU'). @)
J J
All that’s left is to assure that Z is a skew-symmetric matrix as we assumed. The unitarity of P means that
. vt vi\lu v vtv+viv U'v+vio 10
PiP=1> = B = 8)
vl ut)\v o] \Viu+u'v viv+uTol \o 1

2In order to take the derivative with respect to an operator we must first bring it to the left of the expression by using its commutations relations
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multiplying (PTP)’L2 by U~! from the right and (U~")T from the left we find that

uhHw'v+viuyywh=vult+wH vt =0 vu = ~(vu ).

Thus, we verified that Z = (VU™")" is indeed skew-symmetric.

Three properties that are worth mentioning:

1. The global phase of the groundstate is fixed such that (0|Q) = 1.

(€))

2. The matrix Z is gauge-invariant in the sense that all the similarity transformations,H — PTHP that diagonalizes

the Hamiltonian would result the same matrix Z.

3. In order to exclude one of the operators, c.- which defines the groundstate through the requirement in Eq.(6),

we eliminate the €’ column from the matrices V and U. In addition, U is not a square matrix anymore and we

regard U~! as a right inverse.

Proof: Although the columns of U and V are defined up to a global phase, which means that there are infinite

number of similarity transformations that would diagonalize H, the matrix Z is unique. We define a general gauge

transformation (A which is simply a block diagonal matrix made of arbitrary unitary matrices for degenerate

eigenstates and just phase factors for non-degenerate eigenstates. Thus,

A 0 Ur— UA
P+— P | = (10)

0 A Vi VA

but Z is unaltered by the gauge transformation,
Z=WVU Y +— (VAUA) Y =vU . (11)
Derivation of the identities:
_Z_Zijl(/:lﬁ; _Z_Zijwzl//; - 'Z_Zij'a//:l//} _Z_Zij'a/’:l//}
[k, ei<i 1= %ze’(’ s Yy et 1= 0y, e~ . (12)

First we recall the Baker-Hausdorff Lemma

eBAecB = A+ A[B, A] + /21—7[3, [BA]]+...+ fl—:l[B, [B,[B,....[B, A +....
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In the case that [B, [B, A]] = 0 we get [A,e™8] = e™*BA[B, A]. We take A = yy, B = 3;; Z,-jw:zp; and 1 = -1
for which,

AB =Y Zywwlu| = Y Zis (owi - v (60 - wiwn)) = ', 7 (v 6k - wios) + BA.
ij ij ij
In addition, B[B, A] = [B, A]B since W,T'//}L‘//,i = '/’Z‘/’:l//; so [B,[B, A]] = 0. Now assuming that Z is a skew-

symmetric matrix we get

Lz iyt 11 ‘ 1 + 0 1
[l//k,EzZu‘l’il’l/_/jl = EeQBZ(Zki _Zik)¢g = ezBZZk,-wi = 6wTezB (13)
i i k

where in order take the derivative with respect to an operator we must first anticommute it through until it adjacent
to the derivative.

ot 1 . § T
Next, we take A = wz,B = 2ij Zijzﬁ,.’zp} and 4 = —5. Since w?w;zpk = zpk(//;rw;, BA = AB and we get

Ly 7 uhyt
I:dl;, ezz’-/ Zud’,-l//j] = %E%B =0.

3 Thouless representation of many-quasi-particle states

The trick is to represent quasi-particle excitations as HFB vacua by exchanging the role of particle and hole creation
operators [1, 3, 4]. Let us elucidate this statement by constructing an one-quasi-particle state. We take, for instance,

with a fully paired vacuum

b4

@) = [ | c&:10) (14)

i=1
and add a single excitation

|©1) = ¢l |®o) (15)
This one-quasi-particle state is a vacuum to the operators (Ce,, Ce, ..., Cep ) With

_ T ox ~
€1 =€ Ce) = Ceps -y Cepy = Cepy - (16)

This is merely an exchange of a quasi-particle particle annihilation operator, ¢, with its hole counterpart, c_,.
This can easily understood by: a) writing explicitly the basis transformation of the creation-annihilation operators
=y (u‘ezp: + véw,-) and cc = Y; (ﬁézﬁi + Vézﬁj) b) noticing that the PHS implies that ¢/, = 3, (\'ﬂezp: + ﬁéwi)
which leads to a relationship between the creation-annihilation operators, ¢l = c_c. Thus, the exchange is practically

obtained by replacing columns 1 in the matrices U and V by columns 1 in the matrices V and U, respectively. In order
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to obtain a n quasi-particles state from a fully paired groundstate, we repeat the transformation,
(Uij, Vij) «— (V;;,U;j) with 1 <i < N, (17)

for n different columns. In the special case of a system with zero energy single-particle excitations, this method can be

used to change the parity of the groundstate.

4 The evolution of a many-quasi-particle states

Here we describe a procedure to evolve in time many-quasi-particle state in terms of single particle evolution. Since
quasi-particle excitations can be represented as HFB vacua, |®) with respect to a set of Bogoliubov quasi-particles
operator that fulfill the condition

ce|®) =0, foralle >0, (18)

the evolution of the wave function is determined by the evolution of each Bogoliubov quasi-particle and the vacuum,

if it’s not an eigenstate of the Hamiltonian.? The quasi-particle operators at time ¢ are
ee(t) = PTOYU (1)1hx(0) = PT(1)3p(0) (19)

where 1,(0) = (Yxys Yy - - Yans iy Uiy « - i )T and €e(t) = (Cer s Cert - - - Cengoto ciél’t, CLZ,, ...cl ¢, )T areNambu

spinors, U(t) = e *H1* is the evolution operator and P(0) is the diagonalizing matrix of the Hamiltonian at time ¢ = 0
uo) wo)
which the has form P(0) = _ |- Thus, the wave function |®) at time ¢ is
V0) U0)
(1)) = Aexp (Z Zijw} w}) 10(1)), (20)
i<j

where Z(t) = (V(1)U~(¢))* and A is a normalization constant.

One last caveat - a groundstate at time ¢ > 0 is possibly an excited state with respect to the quasi-particle operators at
time ¢ = 0.
S Thousless’ theorem for changing a reference vacuum

Starting with a general product wave functions |®y) which is the vacuum to quasi-particle operators B that posses

PHS ( ,BL = fB¢), any other general product wave function |®1) which is not orthogonal to |®g) may be expressed in

3If the vacuum state also evolves in time, as it is not an eigenstate of the Hamiltonian, the procedure described here is not straightforward to

implement and, probably, use of many-body evolution operator is unavoidable.
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the form

| Do) 2n

|®;) = Aexp (Z ZiiBlB]

i<j
where Z is a skew-symmetric matrix and A is a normalization constant.[1, 2]
Proof:
To prove this theorem we start with two sets of quasi-particle operators 3, 87 and y, " and their groundstates, |®,) and
|@;),respectively. The two sets are related to a common set of fermion operators c, ¢’ by two unitary transformations
P(o) and P(y) that posses a PHS#:

ﬁT = CTP(()) and '7-‘- = CTP(I), (22)
Uiy Vi . . .
where P(;) = lwithi = 1,2and ¢ = (¢ ¢), 87 = (87 B) and v = (y' y) are Nambu spinor, i.e. ¢ = 7. K¢
Vo Ua)
(K is the complex conjugation operator). Next, we express the operators vy, y' in terms of the operators 3, 8%:

" =B Pl Py = B Po (23)
where P in terms of the block matrices U;) and V;) is

1 T RV, T 17 ¥
Po,1y = P(TQ)P(I) = US)U(I) ’ V(;DV(I) U(ﬁ)_V(]) ’ Vg))[_](]) = Yo ‘_/(0’1) 24
Volo +UgViy Vo Viy + U Uy ) \Vony U
The Onishi formula shows that the norm of the overlap between the two states |®g) and [®;) is +/|detU, 1y|. Thus,
non orthogonality of |®g) and |®;) means that we can invert U, 1y>. We proceed by defining a transformation that

preserves the PHS and does not mix the creation and annihilation operators 72, Ye (Ye = yie):

Ul 0 I Z

- - + 0,1 _ (0,1)

(7 7)== (8 B (25)
0 Uy Zoy 1

where Z 1) = (V(O-I)U(B,IU

share the same vacuum, |®y), it’s enough to show that 4 annihilates the Thouless’ represention of |®;) with respect to

) and in the last equality we simply used the relation between v and 37. Since v and %

the reference wave function |®g), appearing in Eq.(21):

1 P + 1 -
Feexp (Ezijﬁ;ﬂ}) 0) = (ZieB] + Iichr)exp (zzijﬁ} ﬁ,'-) |@0) (26)

1 1 1 1
exp (iz,-jﬁ}ﬁj-) (Zie] + Be + 5ZeiB) = 5 Zie5;)| @) =0

4We assume dim (P(O)) = dim (P(l)).
SWe recall that U g, 1) is invertible if only if detU(q, 1)x0
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where we used the Einstein summation rule and Z refers to Z,1). As explained in section 3, every many-quasi-particle
state can be represented as HFB vacua for properly defined new quasi-particle operators. This trick, which completes

the proof, is valid for any chosen reference frame by applying it on the 71, Y Operators.

A few remarks that are worth mentioning:

1. The normalization constant is given by the Onishi formula (explained in the following sections),

A =+{¢1l¢1) = [l det U] = [{Do|D1)], 27

where |¢;) is the unnormalized state that correspond to |®;).

2. The global phase of HFB states in the Thouless representation has implicitly fixed by requiring (®y|®;) = 1,
where |@) is the common reference frame of the states |®;). This means that the phase of the states |®;) is
always relative to the phase of |®@g), but the phase of the overlap between two different state, (®;|®;) do not

depend on their common reference state.

3. When (®@g|®;) = 0 the best practical strategy is to use another reference wave function instead. If the aim is to

calculate the overlap (®;|®;) than the new reference HFB wave function has to be close to both |®;) and [D;).

4. The matrix Z itself is not gauge-invariant since it depends on the global phases of the single-particle eigenstates
of the reference system. However, the overlap between two many-quasi-particle states that share a common
reference wave function is gauge-invariant. Thus, the overlap does not depend on the global phases that multiply
the columns of P and P(y).

Proof: We define a general gauge transformation A which is simply a block diagonal matrix made of arbitrary

unitary matrices for degenerate eigenstates and just phase factors for non-degenerate eigenstates,

Ay 0 Ur— UA;
= .

Py — Py B (28)
A Vi— VA
Thus,
; A 0\ . A 0
— f ’ _ 0) F (1)
Pon =Py Pay — Popy= 0 A PP 0 A

U = AopUonA
— oD O ©O1)7(1) (29)

Vion = AoVionAq)

51 ’ r—1 a 771 -1
= Zo1) = YonYior = AoVon A g Ao = AoVion U g1y Ao-
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By Robledo’s formula, The overlap of the two unnormalized states is proportional to

z -1 0 A\lz 1 \[o =
pr| 700 T — pf o[ Zwon - ! 0 30)
1 —Z(’02) I Ay O 1 Zoy/\Ay 0
Z -1 0 A
o R I 31)
1 —Z2) Ay O
Z -1
- |7 T 32)
1 _Z(OZ)

In the last step we used the following properties:
(a) det(cA) = ¢ det(A) where n = dim(A).

A
(b) det
¥

(c) Simultaneous interchange of two different rows and corresponding columns changes the sign of the Pfaffian.

B
) = det(AD — BC) when CD = DC.
D

In addition, we give another proof by calculating the overlap of two unnormalized states using Read’s formula (which

is more familiar but accurate only up to a sign),

\/det(l - Z(’OI)Z(/OZ)) = \/det(ﬂ(o)(l - V(Q])U(BII)WOQ)U(_O]Z)).?_((O)) = ﬂdet(l - Z(O])Z(OZ)). (33)

6 Robledo’s formula for the overlap of HFB wave functions

The overlap between two unnormalized HF B wave functions,

e} = exp (Z z;'BlB]

i<j

|Do) with k = 1,2 (34)

that share a common set of quasi-particle operators and a corresponding reference wave function is

(p1l¢2) = Snpf Z (35)

it terms of the phase Sy = (=1)NWV+D/2 and the 2N x 2N skew-symmetric matrix

VACEE
Z= . (36)
I -zOo

Proof:

The proof follows Robledo’s mathematically elegant formulation which is based on fermion coherent states[5].
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Intermezzo - fermion coherent states. The fermion coherent states |) are defined as eigenstates of the quasi-particle
annihilation operators,

Bil¢) = &ld) (37)
and similarly, the adjoint of the coherent state is
1By = giel (38)

where the eigenvalues {i and ;" are generators in Grassmann algebra that are not connected by complex conjugation.

The coherent states satisfy a closure relation
1= [ auoionel (39)

where the metric of the integral is given by du(¢) = e~ Zi &% [ j dg]’fdgj. The subject of fermion coherent states is

covered in many textbooks about many-body quantum systems|[6, 7, 8].

Evaluation of the overlap. To calculate the overlap between two unnormalized HFB wave functions,

|6c) = exp (Z ZVBiB;

i<j

|D)  withk = 1,2 (40)

that share a common set of quasi-particle operators and a corresponding reference wave function, the closure relation

Eq.(39) is inserted to obtain

|Do) (41)

1 - 1
(¢1]¢2) = / du(£)(@o| exp (5 > ZEP/B,-/s'i) 1) exp (5 > 78lB]

v

ij
Using now Egs. (37) and (38) one arrives to

1 - 1
($11¢2) = / du(0) exp (5 > Zf})fjé) exp (5 > Zif’g*g;‘) 42)

ij ij
where the property |[(®o|¢)|? = 1is usedS. The above integral can can be written in a more compact way by introducing

the Nambu spinor ¢7 = &5 &8s Ly §15 &2, ) and a skew symmetric matrix,

VA |
Z= ) (43)
J A
as
. 1
<¢1|¢z>=/[7[(d§,-"d§i)exp(§§TZ§). (44)

SThis is easy to deduce from the explicit form of fermion coherent state, [];(1 — &; B;f |®@p) and recalling that the operators and generators fulfill

the relations: {£;, ¢;} = 0and (;c j)T = c}{l.* where £; denotes a Grassmann variable and c; is an operator.
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The skew-symmetric matrix Z can always be transformed to canonical form by means of a unitary transformation M,

o ... 0 4 0 O
0o . 0
o ... O 0 0 2
Z=-M NMmT = mz.m” 45)
-4 0 0 0 ... 0
0 0
0 0 -Aay 0 ... O
where Ay, . . ., Ay are non-negative real numbers[9]. Moreover, the new Nambu spinor nT = (5 e M-+ TIN) =

¢T M retains the structure of the original spinor £. The overlap in Eq. (44) becomes

1
(#1lg2) = detM/l—[(dn;‘dn,-)exp (EUTZCU) =

N N
det M / [ [cdn;dn)exp (Z Am;m) =(-DNdetM [ [ 4, (46)
i i=1 i=1

where the Jacobian that correspond to the transformation is det™ (M) = det(M) , as opposed to the Jacobian of
complex numbers algebra which would be det(M). Moreover, the factor (—1)" originates from the integration over
a Grassmannian Gaussian, f dn;‘dme’l" "% = —);. The final expression can be cast in terms of the pfaffian of a

skew-symmetric matrix. The connection between the product of 4;’s and the pfaffian reads

N
[ [ = NN D2pi(Z,) @7
i=1
and is a consequence of the relation”
0 R
det(R) = (-1)NWN-D/2pf , (48)
-RT 0
and we take the matrix R to be
4
R = . (49)
AN
Using the property
det(M)pf(Z.) = pf(M" Z.M) = pf(Z) (50)
7Zc = ioy ® A where A is a diagonal matrix with entries Ay, ..., Ay. However, Z can also brought to another canonical forms, ZC =

A ®ioy. In this case Hf‘i] A; = pf(Z.) and the factor (—1)NN=1/2 would raise from the different integration order, (H]I(V:1 UM )(HII\Y:1 nK) =

(~NWN=D/2 7 II\V: 1 (77,171 ). Explanation of the law of linear transformation can be found in page 35 in of Reference [7].
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the final result is obtained,

VA |
(¢11¢2) = snpf _ (51
J AL

where sy = (-1)NWNV+D/2,

7 The overlap norm of HFB states (Onishi formula)

Using the relation

pf(A)* = det(A), (52)

to write Robledo’s formula in terms of a determinant yields

(p1ld2) = snpf(Z) o (53)

The right expression in the equality gives overlap of the two states only up to a sign as consequence of the determinant
being equal to the square of a pfaffian. Our next step is to reduce the dimension of matrix Z for which we calculate

the determinant. This is achieved by using an identity for block matrices,

A B
det( ) = det(AD - BC) (54)
C D

where A,B,C and D are square matrices of the same order with complex coefficients and CD = DC. Thus, up to a

sign, the overlap between two states reads
($1]¢2) o< det(I — ZPZW) = det(1 — 21 Z2?), (55)
where in the last equality we used Sylvester’s determinant identity[10],
det( + AB) = det(I + BA). (56)

Eq. (55) is known as Onishi formula which is the usual expression for the norm.

Finally we are in position to write a simple expression for the normalization constant of a HFB wave function,

<¢1|¢1> - det (I — Z(I)Z(D) = \/det (I + (U(];))_l‘/(jlq)‘_/(l)lj(};)
_ \/det (U(T]))—l (U(TI)U(I) + V(T)\_/(l)) U(_ll)) = \/det ((U(Tl))’lU(_I;) 67
~ 1
B 1) - ot | P P
= y/det ((Ua)) U(l)) = ‘det U<1>‘ ~ |detUy
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where U(f)) Uy + ‘/(€>\7(0) = ] because P(TO)P(O) = I (see Eq.(8)).

Similarly, up to a sign, the overlap between two different unnormalized HFB states is,

de (=202 = e 1+ 0 )

\/det ((UZ;)YI (UZ;)U(Z) + V(T)\_/(z)) U(_Zl)) = \/det ((Ugl"))fl Uoy U(_z;) (58)

_ det U,
- \/det (U UanTa) = | .
M @ det U(p) det Uy

By using Eq.(57), we obtain the overlap between two different normalized HFB states -

|det U(z)i |det U(1)|
(D|Dy) = 4| ——=————=/det U(z,l). 59)
det U(Q) det U(l)

The first root can contribute only a phase as its magnitude is always one. The second root is invariant under the change

(P11¢2)

of a reference wave function as P 1) = P:z)P(l) = P(TO,Z)P(O,]).

The analog of Onishi formula for a regular metal

The many-body ground state of the system is

j20) = [ [lwio) = [ ] X V2w 010y = det (vio) [ Tw]10). (60)
e<u e j J
where V. = Vij J s #.
N

Using the result above we find that the overlap of (Q(0)|Q(¢)) is

.
©@O1e0) = @O [ ] w}) det (V'(0)) det (v""(;)) [T#10) = det (v"“(r)v'(O)), 61)
J J

which is the analog of Onishi formula for a regular metal.

Proving the identity - P, |) = P(TZ)P(U = P(TO’Z)P(O,I)-

In order to prove the relation it is enough to show that:

_ 77t T
L. Unz) = Uy Vo) + Vg ) V02
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Proof:

(UUL + Vi) (U Uy + Vi) + (V] UL + U V) (VI U + UL V) =
(U Uy + V] Vo) UL Us + V] Va) + (U Vo + V| Do)V Up + UJ Va) =

Ul (UoUS + WV ) Us + Vi (W) + DoUg Vs +

—— e —— e
1 1
Ul (UoVy + VU ) Va + V[ (VoU§ + 0oV ) Us =
——— ————
0 0

Ul +V{Va=U12 (62)

2. Vo =V U + Ug Vi)
Proof:

VIU, + Uy V) (U U> + V] Vo) + (U UL + Vi V)T (V] Us + US V) =
(U Vo + VI UNUS Uy + ViVa) + (UT T + VI Vo) (Vg Uz + U Vo) =

Ul (VU + 0oV Uy + UT (VoY) + OoUY) Vot

N N—— e’
0 1
VI (UoUf + WV ) Uz + V] (UpVy + VU ) Vs =
——— ———
1 0

U+ VU, =Vip (63)

8 Zero-modes

The standard procedure for calculating the overlap between two many-body states assume that all positive energy
single-particle eigenstates are related to the negative ones by the PHS operator. However, it is not granted that
degenerate eigenstates would obey this relation and one must construct such states. The case of zero-modes is more
complicated, since not only that they are degenerate, it is not obvious which one of the zero-modes constructs the
many-body groundstate. In this section we describe a procedure to construct zero-modes which are related by the PHS

operator and a scheme to determine the zero-mode that build to many-body groundstate.
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8.1 Construction of zero-modes related by the PHS operator

The PHS, H = 7. H*1,, assures us that two non-degenerate states with energy |e| > 0 are related by |€) = 7,K|—€). In

the case of zero-modes, € = 0 we need to construct two orthonormal states that also maintain this relation,

[vi)

[v2)

aluy) + bluy) (64)

Tvy =aT|uy) + BT|L£2> (65)

where T is the PHS operator, T = 7K (K is complex conjugate operator).

The requirement that v; (and v,) are normalized gives a constrain on a and b,
vy =1= la?+|b* =1 = a =|cosale®, b=]|sinale”. (66)
The second requirement, namely, that the two zero-mode are orthogonal yields the following constrain:
(ilva) = @i |Tlwy) + B> (ua|Tluz) + ab (Gur|Tluz) + (ua| Ty ) = 0. (67)

Using the identity,
(ua|Tlur) = (Tur|uz)* = Cur [T |u2) = (uy|T|ua) (68)

the relation can be further simplified,

ilva) = @ (ur|T|ur) +b* (ua|T|uz) +ab 2{uy |T|uz) = 0. (69)
————— ————— ——————
A B c

In the case of C = 0, the constrain is simplified further to Aa@*> + Bb*> = 0 and together with the first constrain
la]® + |b)* = 1 we get

1

la?eA+ (1 - |a)e ™B=0= |a|*(Ae™™ —Be™ ™)+ Be ™ = 0= |a* = —————
1- %elz(y_ﬁ)

(70)

withy -8 = —%arg% +(n+ %)n and n € Z because |a| < 1. Since the zero-modes are defined up to a phase it’s enough

to determine the relative phase between a and b.3

If C # 0, combing the two constrains (Eq.66 and Eq.69) yields,

lal> e PA+(1 = |al®) e B +|a|V1 = |a|> Ce7 B = 0. (71)
N—— N—— N———
x A’ B’ c’

80ut of the infinite possibilities to choose the phases 8 and v, it is convenient to pick 8 = %argA andy = %argB.
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subtracting the term which is o« C from equality a squaring both sides gives
(A’ = B)x +B')* = C"?x(1 - x). (72)
This is just a quadratic polynomial in x:

= (A= B')Yx>+2(A' - B)B'x+ B> =C"?x - C"x?
= (A" =B +C?) x>+ (2A -B)B -C?*) x+ B* =0 (73)
N——

L

M N

Let us choose A’, B’ and C’ to be real (we assume that it is always possible). Thus, the phases are
1 1 1 s
Y= EargB, ,B:argC—y+nm:argC—§argB+7rm and also 8 = zargA+§n. (74)

Only if the last two expressions for 3 are consistent, the assumption {A’, B’,C’} € R is valid. Thus, one should check

that
argC - 2argA — LargB = X (75)
g pMeATuER =S
All is left to determine |a|* by solving the quadratic polynomial, which now has real coefficients,
-N+ VN2 —4ML
laf> = ———M———. (76)

2M

The properties of the complex-conjugation operator

1. The complex conjugate operator Kz = Zz, is an antiunitary operator. This implies that K(a|a) + B|b)) =

aK|a) + BK|b) and (Ka|Kb) = {(a|b)*.
2. This adjoint of K is defined by (Ka|b) = (a|KT|b)*.
3. By definition K? = 1, thus K? is unitary.

4. The adjoint of K is also antiunitary and KK™ = KTK = 1.
This property should not be confused with the definition of unitary operators, as K is not complex linear

and the adjoint of K is defined differently.

Proof:

(ala)* = (Ka|Ka) = (a|K'K|a) = KK = 1

(KKNK?* = K(K'K)K = K* = KK' = 1.
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5. The adjoint of K fulfills KT = K.

Proof:
K =k'K>=(k"K)k =K = KT =K.

8.2 Thouless representation when zero modes are present

In order to construct the BCS many-body groundstate, we start with the bare vacuum |0) and multiply it by a product of

quasi-particle annihilation operators with positive energy. In the end multiply it with half of the zero-mode operators,

o) = [ Jeo, | | eal0)- (77)
i J

In most cases, there is only one set of zero-modes for which the construed state won’t vanishes identically. This point

is better understood by considering the Thouless representation of the groundstate,

|Q) = +/| detU| exp

Zzwmjm,2=www. (78)
i<j

When the groundstate vanishes identically, detU = 0 and since (0|Q) = +/|detU| it means that groundstate is
orthogonal to the bare vacuum. In addition, det U = 0 means that U is singular and Z is undefined. Practically, we

identify the zero-modes for which det U # 0 as the annihilation operators and use them to contract the groundstate.

Constructing the Kitaev chain groundstates (even and odd parity)

The Kitaev chain is a lattice model of a p-wave superconductor in 1D
H=-u Z cicx - Z(IC;CXH + Acxcyx+1 + hic), (79)
X Y

where u is the chemical potential, ¢ the nearest-neighbor hopping, and A the coupling constant.

Let us consider the case u = 0, = A = —1 for a lattice of 4 sites,
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eY[o 1 0 0| 0 -1 0 0)\[e
allr o 1 0o 1 0 -1 0l|la
dlfo 1 0 1] 0 1 0 -1ffc
3 T
1]c 0 0 1 O 0 0 1 O0]|lcs
H = Z(CI,C)H.] + CxCxy1 +hic) = 3 4 ; (80)
=1 1 0 1 0 0 0 -1 0 0f{]¢
oll-t o 1 0| -1 0 -1 0
allo -1 0o 1| 0o -1 0 -1l
a)\0 0 -1 0| 0 0o -1 0]\
Next, we rewrite the fermion operators in terms of Majorana fermion operators,
e —cl Cx +Cl &)
Yx =1 S Nx =
X \/E X \/E
This yields
01 0 0\lm
3
. . 0 0 1 Ofm
H=i ) yaae =i (71 2 7 74) : (82)
x=1 0 0 0 1 n3
0 0 0 0f\ns
The Hamiltonian eigenstates in the fermion basis are:
AN A
i 7 7 /s 7 7
L 2 2 2 2 2
1 1 0 0 -1 1 0 0
0o 1 1 O 0o -1 1 0
0o 0 1 1 0 0 -1 1
111 0 0 1 1 0 0 -1
U=-= (83)
2[.1 1 0 0 I 1 0 0
0o -1 1 0 0 1 1 0
0 0 -1 1 0 0 1 1
1 0 0 -1 1 0 0 1
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F0+=C1+C4—CI+CZ

F0_=—C]+C4+CI+CI
- P

I =ctate—¢ (84)
- t_

1"2—c2+03+c2 o

+

- T
I3 =ctate—¢

Q) = T30 [0) = T31(]1000) — [0100)) = T3(=|1100) + [1010) — [0000) — [0110)) =

—|1110) + [1101) — [1000) — [1011) — [0010) + [0001) + [0100) + [0111)  (85)

To+|Q) = —|0110) + [1111) + [0101) + |1100) — |0000) + [1001) — [0011) — [1010) + |1010)

+10011) + [0000) — [1001) — [1100) — [0101) + [0110) — [1111) =0 (86)

To_|Q) = +]0110) + [1111) = |0101) + |1100) + |0000) + [1001) + [0011) — [1010)
~1010) + [0011) + [0000) + [1001) + [1100) — [0101) + [0110) + [1111) =

2(]0110) + [1111) — [0101) + [1100) + [0000) + [1001) + [0011) — [1010))  (87)

0o 1 -1 1
. -1 0 1 -1
= 1—‘0—|£2> = eXP(gijC,- Cj)’ 8= (83)
1 -1 0 1
-1 1 -1 0
9 The Berry connection
The closed-path Berry phase defined above can be expressed as
vo= [ ar-A® (89)
C
where
An(R) = i(n(R)|Vgr|n(R)) (90)
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is a vector-valued function known as the Berry connection (or Berry potential).

In what follows, we use the expression of the overlap between two different states to derive an explicit expression of

the Berry connection.

—iAR) = (OR)|VR|O(R)) = lim VR(P(R")|D(R)) = lim [A(VRB)SnpPfZ + ABSN VRpfZ] on
where in the last step we used Robledo’s formula for the overlap between to states,
’ Z(R) -1 —1\*
(®R)|D(R)) = [ det UR)| ] det UR")] Sypt L z=(vuy. 92)
-Z*(R")
A B
Z
Using the two relations,
1
AyptM = 5prtr(MlaxM), 3y det M = det Mtr(M '8, M) (93)

we find that

B 1
~iAR) = Jim [m(det U* VrdetU +detU Ve det U)SypFZ + 5 ABSKpEZtr (z—lsz)

= % [tr(U_IVRU) +t(U'VRU)* + Rl/imRtr(Z_IVRZ) (D(R)|D(R))

1
_ -1 1. -1
=Retr(U VRU) + 7 R][llT)]R tr(Z7'VRZ).

In order to simplify the expression further, we recall an identity of inverse 2x2 block matrix,

-1
A B (A-BD7 )™t —(A-BD™'C)"'BD! ©4)
C D -D'c(A-BD™'C)"' D'+ D 'C(A-BD'C)"'BD!
and substitute A=Z,B=—-1and C =1,
-1
zZ -1 Z+ D! Z+D HD!
Z1 - _ ( ) ( ) ' ©5)
1 D -DYz+DH' Dl'-DYz+DH'D!

We continue as follows, multiply the expression for Z~! by VR Z, take the trace over the whole expression followed

by the limit D — ZT,

D—-ZT Z D 0 0 D—Z

-1
) 4 ) zZ -1 Z' 0 ) el
lim tr (Z(i) VRZ) = Dlgn% tr . = hmf tr ((Z +D ) Z )

_ ((z + (z*)—‘)-lz') _ ((z + (ZT)-I)-‘(ZT)—‘Z*Z') _ ((1 + ZTZ)-IZTZ’) . (96)
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Substituting the result in Eq. (94) yields an explicit expression for the Berry connection,

—iA,(R) = (D(R)|VR|DO(R)) = Re tr(U~' VRU) + %tr ((1 + ZTZ)-IZTZ') . 97)

The Berry connection in terms of the matrix Z

In order get an expression written solely in terms of Z, we notice that
(O|D) = 1 = VR(D|D) = 0 = (VRD|D) + (O|VRD) =0
= (O|VR®D) = ~(VrD|D), (98)
and since
(VRO(R)|O(R)) = lim VR(®(R)|O(R")) = lim [(VRA)BSyPfZ + ABSy VrptZ]
=Re tr(U~'VRU) + %lim tr(Z7'VRZ), (99)

the expression (®|Vgr®d) = %(((DWR(I)) — (VRr®|®)) would depend solely on Z. In order to simplify further the

expression in Eq. (99), we recall an identity of inverse 2x2 block matrix[11],

-1
A B A"+ A'B(D-CA'B)IcA™! -A'B(D - CA™!'B)! (100)
C D —(D-cA™'B)lca! (D-CA™'B)™!
and substitute D = Z,B=—1and C = 1,
-1
A -1 ATl - AN ZT+ AT TTATD AN ZT+ AT (aon)
1z —(Z + A1) 1A (zt+ Ayt |

We continue as follows, multiply the expression for Z~! by VR Z, take the trace over the whole expression followed

by the limit A — Z,

-1
. A -1\ [o o i
lim tr (Z(l.) VRZ) = lim tr = lim tr ((Z +A7) Z") =
A—Z A—Z 1 ZT 0 Z/T A—Z

tr ((zT + Z*‘)*lz’*) —tr ((zz*l)(zT + Z*l)*‘z’*) —tr ((1 + Z*Z)*‘Z""Z) . (102)

where in last step we exploited the fact that the trace is invariant under cyclic permutations, tr(Ay, Ay, ..., AN) =
tr(An, Ay, ..., Ay—1) for any N € N and the property of invertible matrices, (AB)! = B1A7L. Substituting the
result in Eq. (99) yields

(VRO(R)|D(R)) = Re tr(U~' VRU) + %tr ((1 + zTZ)-lz'Tz) . (103)
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Combining Eq.(97) and Eq.(103) yields
| 1 . . )
(DVR®) = 5((D|VR®D) — (VR®[®)) = ;tr ((1 + 77y Nzt - Z"Z)) (104)

which is the celebrated expression for the Berry connection appearing in Read’s article[12].

Numerical calculations of the Berry connection

Here we write the berry connection in terms of the matrices U, V and U~!. In addition, we use a few algebraic

manipulations so the expression includes only derivatives of U and V.

We first recall that the unitary of the eigenstates matrix gives the following identities:

vt vi\flu Vv | vlv+viv=1 VIv+UTO=1
= =

vl uT|\v U U'v+vit=0 VIU+UTV =0

u v\fuT vf | vut+vvT =1 vwi+OUT =1
= =

v o]\vT Ut vvt+vuT =0 vUur+o0vl =0

Our starting point is an expression of the berry connection [12] in terms of matrix Z,

iI{O|VR®D) = %tr

(1 + ZTz)f1 (Z*Z' - (ZT)/Z)] . Z=(Uly (105)

Next, we rewrite (1 + Z*Z)_1 in term of U:

1vziz) ] = L+ oy o) = (1+whvive) (106)
(1+2'2)
-1
= |wh (vtusviv)uT | =out
[ ——

1

Using this result we calculate the first term in the difference:

tr

(1 + zfz)_1 z*z’]* r [UU*(UT)-‘VT (V’U-‘ + V(U—')')] (107)

w(Viv') - u(viveTv),
where in the last step we "moved" the derivative from U~! to U using the relation

I'=wl'vy=wYv+v''v=whvu=-v'v (108)
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Using the result in Eq.(106) we calculate the first term in the difference:
(ez2) " (2) 2] = wloor[((v)) ] vo| (109
= alvor|((e) ) v o) ()] -
- ey ) -] (o) v

where in the last step we again "moved" the derivative from U~ to U using the relation

tr

-11’ ’ -1
UYU =-Uv = Ut [(UT) ] - (UT) (UT) (110)
combing Eq.(107) and Eq.(109) the Berry connection can be written as

i{(D|VRD) = %tr [V"‘V’ —v (V"')/ + (U*)_1 viy (U"‘)' - V""VU‘IU’]* (111)
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10 The generalized density matrix

The generalized density matrix is defined as

(D Tn(D (Dmn(D n,m n,m
_ [Pl @) (Pl @)} [ o, Kn, (112)

\opiuilo)y @uniioy \-Zum 1= pum

where p and « are called the normal and abnormal density (or density matrix and pairing tensor). Furthermore, the

R

generalized density matrix is Hermitian, idempotent (R = R?) and R admits only two eigenvalues: 0 and 1. Eigenstates
that correspond to eigenvalues zero and one are also eigenstates of the single particle Hamiltonian, H with positive and
negative energies, respectively.

In this section we derive simple expressions for the correlators k;; and p;;, in terms of the skew-symmetric matrix,
Z=VU'. We begin by pointing out that the derivative of the unnormalized many-body states with respect to a matrix
element of Z yields:

1 +
02,119 = 5 (Wt = 030} ) 100 = w018

1 (113)
32,,1,,1 ¢y = <¢|§ Yntm — Ym¥n) = {PWnthm-
Thus, the correlators can be expressed as
Kmn =(Q(Z2) Y| ©(2)) = lim 8, log(®(Z)|D(Z))
77 :
) (114)
B QLW |V(2)) = lim 87, log(@(2)|V(2)).
A many-body state, ®(Z)) is required to vanish when a quasiparticle annihilation operator, c¢ acts on it,
ce|®(Z)) =0, (115)

for any € belonging to a certain set of single-particle eigenenergies, which characterize the |®(Z)). The annihilation
operators take the form

ce =Ulyi +Viyl, (116)
where U, and V. are the particle and hole parts of a single-particle eigenstate with eigenenergy €, respectively. However,
we can use a canonical transformation to get a new set of quasiparticle annihilation operators, ¢ that depend solely on
Z,

U= UM UY + (VU‘I)T ot ==y - zyt, 117)
where we used the Nambu spinors T = (Ceps Ceys - -+ Cen ) YT =W, ¢, ..., ¥n)and é = (é1,é, ..., E). Since the
transformation is only among the quasiparticle annihilation operators, the operators ¢ and ¢ share the same many-body
state and thus,

(v-2s')102)) = 0. (118)

151



Using our new set of quasiparticle annihilation operators, ¢, we manipulate the expression <I>|6T6j|(D) =0togeta
L

relation between « and p in terms of Z:

(O] (lﬁ; - Zjil/’i) (lﬁk - Zkll#;) |D) =

(@I (0w = Zut T = Zinin + ZisZuawi] ) 10) = (@l - Zewu10) =0 (119)

where we used the commutation relation in Eq.(13),

it N - - i i
[lﬂk, e%anwLwl] = eaZmntntn Z il = —Z;r|) = - i jied Zmm b (lﬁk + Zk,l¢;) 0)
(120)
=~Zi i Zi i) | D).
Thus, the relation between the normal density p and the anomalous density « is
prj = (@I Yi|®) = Zi (@l Y1) = Zix) , = p = Z" = ~Zk = k2" = 2, (121)

where we used the properties p” = p, x = —«” and Z = —Z". Based on the identity in Eq.(133), we derive a simple

expression for « in terms of Z:

L (#19z,,9) 1
U ley 2 o

=%( (1 +ZTZ)_l Z?] - (1 +ZTZ)_IZT]M) _

n,m
where we exploited the skew-symmetry of (1 + ZTZ)_] Z%. In order to prove that indeed (1 + Z*Z)_l ZT is skew-

(1 + Z"'Z)_1 VAL, Z]
(122)

(1 + ZTZ)_l Z*] i

mn

symmetric we substitute Z = VU1,

(1 + z*z)fl zt = (1 + (VU‘I)T\_/U_I)A VU = (1 + (U‘I)TVT\_/L_/‘I)% wHrvr

123
- ((U—I)T (UTU + VTV) U‘l)_l WYV = guT (U HVT = OV, e
and using the identity PTP = 1 we find that
PPN, =0=UV +VUT =0= OVT = —(OVT)T. (124)
Finally, it follows from the derivation above that
k=-UVl p=-zk=VvV". (125)
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In what follows, we use the expression of the overlap between two different states to derive an expression for the

anomalous density matrix in terms of the Z matrix.

(#(2)10z,,,¢(2)) = lim 0z, ($(2)|9(2)) = Jim Sy VrptZ (126)
where in the last step we used Robledo’s formula for the overlap between to states,
- zZ -1 —_—
(#(2D)|¢(2)) = Snpf _} z=vut (127)
1 -z
N———
4
Using the relation,
AxptM = %prtr(M’laxM), (128)
we find that
1 1 -
(D02, #2)) = lim SSyptZur (Z7'VRZ) = lim Sw(Z™' VRZNGDIG(Z)  (129)
’ 7272 772

In order to simplify the expression further, we recall an identity of inverse 2x2 block matrix,

-1
A B (A-BDC)™! —(A-BD'C)"'BD"! (130)
C D -D'c(A-BD™'C)"' D'+ D 'C(A-BD'C)"'BD!
and substitute A= Z,B=-1,C=1and D = Z'
-1
z -1 Z+Z ! AVARD VAR
Z'= = ~( ) . (~ )~, e (131)
1 D AR VAW AR VAR VAR VAN AR WV AR

We continue as follows, multiply the expression for Z~! by 0z,,., <, take the trace over the whole expression

followed by the limit 7> Z,

-1
lim tr (ZG;VR.Z) = lim tr (Z t]) (Z O) = lim tr ((Z+(ZT)_1)_IZ')
77 Z—-Z 1 77 0O 0 7Z—Z

_ ((z + (ZT)—‘)—IZ') _ ((z + (z*)—l)—‘(zf)—‘zfz’) _ ((1 + z*z)—‘sz’) . (132)

Substituting the result in Eq. (129) yields an explicit expression for the anomalous density matrix,

+ Z)|o YA

m,n

(1+7'2)'78, z) . (133)
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Appendix E

The Bogoliubov-de Gennes models on a

lattice

Contents

1 The s-wave superconductor
1.1 s-wave superconductor - continuummodel . . . . . . . ... Lo

1.2 s-wave superconductor - tight binding model on a square lattice . . . ... ... ... ... .. ...

2 The p-wave superconductor tight-binding model

2.1 Transforming from a p-wave superconductor tight-binding model of a square lattice to the continuum

2.2 Including vector potentials - Peierls substitution . . . . . . . . ... ... ... ...

2.3 Including vortex defects - exploiting the gauge invariant property . . . . . . . . . . . ... ... ...
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2.4  Transforming the creation-annihilation operators from the lattice site occupation basis to the energy

occupation basis . . . . ... L L e
2.5 The anti-commutation relations of the excitation operators . . . . . . . . ... ... ... ...
2.6 Derivation of the p-wave superconductor many body ground state . . . . . . . ... ... ... ...
2.7 TheStreda Formula . . . . . . . . . . e e e e e e e
2.8 SUPEICUITENS . . . . . . v ittt e et e e e e e e e e e e

2.9 Transforming from a p-wave superconductor tight-binding model of a triangular lattice to the continuum

2.10 Fermion parity switches . . . . . . . . . . . . . e

2.11 Calculating the angular momentum of the cooper pairs . . . . . . . . . . ... .. ... ... ...,

3 Lattice gauge fields
3.1 Calculating the the flux per plaquette . . . . . . . . . . ... .
32 TheLandaugauge . . . . . . . . . . . e
3.3 The almost antisymmetric gauge . . . . . . . . . ... i i e e e e e
3.4 The construction of the Landau Gauge and the Almost Antisymmetric Gauge . . . ... ... .. ..
3.5 TheSingular Gauge . . . . . . . ... e

3.6 Magnetic unit cells and the degeneracy in the energy levels of Hofstadter Hamiltonian . . . . . . . . .

4 The geometric phases of the p-wave superconductor ground state as two vortices are exchanged

4.1 Derivation of the Gauge-Independent Berry Phase formula . . . . . .. ... ... ... ... ....

1 The s-wave superconductor

1.1 s-wave superconductor - continuum model
The s-wave continuum Hamiltonian:

ﬁ(—p+A)2—u A 2%

H =yt
oy o) A 2@+ A+ J\uy

(€]

We note that, in contrary to p-wave superconductor, the Bogoliubov representation of the s-wave continuum Hamiltonian

does not incorporate a factor of 1/2.
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1.2 s-wave superconductor - tight binding model on a square lattice

Kk’ .

H = Z Clt,o- (% - /J) Cko + Z (Acch k| + Ac,lekT) 2)
ko k
We transform from the the continuum to a square lattice using the approximation k22“2 ~ 1 — cos ka and defining
= a=1)
cos ky + cosk,y -
H = ZCLU (—"T —pu+ ) Cko + Z (Acch et Ac_klckT)
k.o

- Z ¢l . (~21(cos ky + cosky) = p+ 41) e + Z (Acf el + Aeyen) 3)

= ch ( t(cos kx + cos ky) — 5 + Zt) Cko — Ck o (—t(cos kx +cosky) - g + 2t) cikg

. . 7
+ Z (Acch ki Ackl kg T AC K ekt - Ac,chkl) + Z (—z(cos kx +cosky) — 5t 2t)
k

ko
Ey
In term on Nambu spinors the Hamiltonian is
ek) O 0 A Ck1
0 ek -A 0 c
H(k) = %zk] (6 ey ewr en)| _(A) o o cf‘ :T o
A 0 0 —e(-k)/\e, .

where e(k) = —2¢(cos ky + cos ky) — u + 4t. The transformation of the fermion operators form the momentum basis to

the spatial basis is
1 .
c:§ kg = —= > ek ()
I (k|x)tpx V52 e

where N is the number of lattice sites, k,, = Xm =ma and 0 < m < N. The momentum states form an orthogonal

Na ’
set:

N N s
. 127711(1 J) , 1=7
Zexp (ik(x; = x;)) Z [ ( )] =9 omn ., =N

k n=1 e #J
e -1
Using the last two properties we find
—_— 1 : - ;

Z ezkac]Lck — N Z pik(m+1 m)acl‘”cm’ — Z 5m+1,m'C,LCm' — ¢ et (©6)

k k,m,n m,m’ m
and

T i 1 i
Z cos kae, ¢, = Z ( ika 4 ’k“) € = 5 Z (1pm+11/)m + "/’In"bmﬂ) . @)

k k m
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From here it is straight forward to get the s-wave Hamiltonian in the tight-binding model,

H = Z [ -t (¢jn+1,n,o'1/)m’""" + 'l/)y’nyn!g"l/)m+1,n,0' + tpjn’n_'_]’o.'l/)m,n,o + 'lb:n,nyo—wm,rwl,a') =

m,n,o

— (= 4 o P + DY) B Mm,nwm,m} ®
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2 The p-wave superconductor tight-binding model

2.1 Transforming from a p-wave superconductor tight-binding model of a square lattice to

the continuum limit

We begin with the p-wave lattice Hamiltonian,

H = Z [—t (Tb:—n_,,l’n'l/)m,n + 'lbjn,n+1¢m,i1) - %(M - 4t)¢jn,n¢m,n

+A (z/:mH P+ i¢jn‘n+1¢jn,n)] +he. (9)

Our next step is to transform the Hamiltonian into momentum space. The Fourier transform of the creation and

annihilation operators combinations that appear in the Hamiltonian can be written as
! ikyma+ikyna
o = De Tk ky (10)
N Ky ky

where for a lattice size (gx, gy) we have N = gx X gqy.

A translation operator transforms as

w ’l/) _ lkx(m+1)a+1kyna —ikyma— Lk,nu T cr - =
m+1,n 7N T k ey ko ky T

mnk )kxk\

:_Z Z Z ima(ky—ky) ma(k k) lakch ok kay

m.nkx,ky ki, ky

_ T S 177 S oL iaky T
- Z Z 6kx’kx6kyvkye ckx,ky'lpkx’ky - Z ¢ ckx,kyckx’ky (1)

Keky Ky ke KoKy

where assumed periodic boundary conditions, ga(k — k) = 2zp with p € N in order to get an expression for the

Kronecker delta -

q q ]; k
ima(k-k) _ a(k-k) 4 ~
Z Z ( ) eiqu(llfk)_l -0 ]’E k - q5k,k (12)
m=1 m=1 1—e-iali-k) — ’
and the conjugate transpose of the last combination yields -
D Bhntomein = Z eihel L ek, (13)
m,n Ky, k

The sum of the translation operators in the x direction gives

Z (¢m+] W Ymn + ¢jn,n¢m+l,n) = Z (e'hx 4 e‘“""‘)c]tmkyckx,kvv =2 Z cos(akx)c,tx’kyckx,ky (14)

kx,ky kx,ky
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Similarly, for the y direction we have

¥ _ iaky T
S Wt = 3 e e, ®
m,n kx,ky
and its conjugate transpose
i —iaky .t
2 Vnatbmas = 3 €10 cu, (16)
m,n kx,ky

The sum of the translation operators in the y direction gives
D1 mn + Bt = (R e Rel | exk, =2 ) cos(aky)e] ¢ (17)
myntl YN mun¥mn+l | = ko ky “kxsky = SNERY Mok ey Chexsky
mn kyky kyky

The occupation number operator is

D hntbmn = D € ek (18)
m,n

kx,ky

The interaction terms are

1 +_ fake ot _1 Z iaky ot of 1 Z iaky of T
Z¢m+1,n¢m,n = Z € Ok Coknky T 5 € ey Ckeky T3 €T ok Sk
m,n

ky.ky kx.ky —kx,—ky
1 ; i 1 S +
_ 2 iaky T i _ —iaky f i —; Z ; i T
=5 Z e 1€k, 3 e ok, Sk, = s1n(akx)ckxykyc_kx‘_ky 19)
ka,ky kx,ky kax.ky

In the last derivation we used the fact that the sum is over a symmetric range and the fermionic commutation relations

of creation and annihilation operators. Similarly, we find that

—iak . .
Z¢m,n¢m+1,n = Z e e gk Chyky = Z sin(akx)C—k,,—k, Ck,.ky (20)
m,n kx.ky kx,ky
S iaky ot ot P ol Pt
Z’/’m,nn‘pmsn = Z €k Sk ok T Z sin(aky)e, g, €k, @n
m,n kx,ky kx,ky
—iaks . .
Zwm,n'(pm,rwl = Z N N Z sin(aky)e_, —k, Ck, .k, (22)
m,n kx.ky kx,ky

Finally, we can write the transformed p-wave Hamiltonian as
; .
H = Z {—Zt cos(akx)cltx’ky Chy ey — 2t cos(aky)ckx’ky Chyky — (= 4t)c,'cx,ky Ch, ky
k. ky

- iA* sin(akx)c_kxg_kyckx,ky) +

o f t
+ (zA sm(akx)ckx’ky I,

(iA[i sin(aky)lef , ef A isin(aky)]e k, Sk, )} 23)
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In terms of Nambu spinors it can be written (up to an additive constant) as

. [t (cos(aky) + cos(aky)) — (5 — 2t iA (sin(aky) + i sin(ak
H = Z‘Pﬂ (cos(akx) (aky)) = (5 = 2t) (sin(aky) (aky)) ¥, 24)
Kok —iA* (sin(aky) — i sin(aky)) 1 (cos(aky) + cos(aky)) + (5 — 21)
Chy.ky . . .
where \I’E = (c;i o c_kx»_kv) and¥Wx = | |are the Nambu spinors. In the continuum limit (k — 0):
‘ —kxs—ky
k2 . .
1 = — 2iA (ky + ik
H=5 ), % am (kj v) P (25)
kx,ky —2iA* (kx - lky) o + u
where m = ﬁ and aA — A. We see that the continuum limit has the characteristic py + ip, chiral form for the

pairing potential.

2.2 Including vector potentials - Peierls substitution

We give a simple derivation for the Peierls substitution, which is based on Feynman’s Lectures (Vol. III, Chapter 21).
Our starting point is Hofstadter Hamiltonian:
i} i,
Hy = Z ( —te'"mn|\m+1, n)(m, n| — te'“mn|m, n+1){(m, n| — e|m, n){m, n|) + h.c. (26)
m,n
The translation operator |m + 1){m| can be written explicitly using its generator, that is the momentum operator. Under

this representation its easy to expand it up to the second order,

. 2
Im+a)(m| = exp (—%)Im}(w - (1 - ’%a - %az + 0(a3)) m) (m| 7

and in a 2D lattice |m+a)(m| — |m, n+a){m, n|. Next, we expand up to the second order the phase factors,
ieA,  2Ar , ieA,

. I
e =1-ita- 3 (67 +i0")a = 1+ Sa- S5t + ka? + O(@) (28)

where for brevity with denoted: 6 = 6, Ax = 0 = 0405, |, and A} = 0" = 026

m,n> a m,n|a=

0Withh:e:l.

Substituting these expansions to relevant part of the Hamiltonian yields

e"\m + a)(m| + e \my(m + a| =

e A 2A2 e A’ j 2
(1 + leh Ya-— ethx a® + lezhx a*+ O(as))(l - %a - %az + ()(aS))|m)(m| +he=
2 v Ay AL
(Z—Ih)—;a2+ e{ph2 }(12— ehzxa2+0(a3))|m><m|

2
<[~ o - ead 20 )mnl 29
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Generalizing the last result to the 2D case, the we arrive to the Hamiltonian of a 2D electron gas at the continuum limit:

Hy=—(p-eA)’ +& (30)

1
2m
where the effective mass is m = #%/2ta? and & = & + 4.

Moreover, another useful result is
-i6 i0 2iad 3
(e Im D m+a, L] = lm+a(mL1) x =5 m D)y~ A)m L] +0() (31

which is relevant when considering the Rashba Hamiltonian, Hg = @(o X p) - Z where @ = 2ad/h is the Rashba
coupling , p is the momentum and o is the Pauli matrix vector. This is nothing but a two-dimensional version of the

Dirac Hamiltonian (with a 90 degrees rotation of the spins).

2.3 Including vortex defects - exploiting the gauge invariant property

In this section we show how the phase factor of the coupling terms, which comprise all the information about the vortex
defects change as we transform from the continuum limit to a discrete model. Staring from the p-wave continuum

Hamiltonian

. ﬁ(_p + A)z —H {A’ Px — ipy} Uxt
A T S @)
{A,pxﬂpy} “nP+A) +u [\yy,
with A = %/, ¢/¢™ and ¢(x) = 3, Arg(x — X;), we apply a gauge transformation U = ¢/™:%/2_ The gauge transmutes
the phase factor of the order parameter into fictional vector potential, V ¢(x) and the Hamiltonian takes the following
form
ﬁ(—P + 3)2 —H Ao(px — ipy) l//x,re_[d)(x)/z

1 .
H=— (,ﬂ P2y, e*i¢(x)/2)
Xt X,1 ) i
2 Ao(px +ipy)  —-(+a)? +u |y, e W2

(33)

with a = A — V¢(x)/2. When discretizing the Hamiltonian there is a known prescription to deal with the vector
potential - that is Peiers Substitution. Our last step is to use the U(1) gauge transformation to recover the phase of the

coupling terms. Under the transformation 1y —> 1bxe’?™/2 the translation operator transforms as

. 1 X+ 1 .
W], swxexp [ -5/ er(r)] =, stnexp [z(qs(x) - 6(x+8))| = %], 5tx (34)
while the coupling term transforms as
1
5wl = vl el exp |5 (000 + ox+ ) | (35)

Thus, we have found how to incorporate vortex defects into the tight-binding model.
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2.4 Transforming the creation-annihilation operators from the lattice site occupation basis

to the energy occupation basis

The lattice Hamiltonian is
1
H=) [—t (W1 W + e Ymn) = 5 = 409} W
m,n

(bt B+ I ) )| +he. (36)

where the coupling constant in the presence of vortex defects is defined in Eq.(35). We rewrite it in the Nambu
space formalism, H = % Dimn [‘I”LH‘I’ —(u— 41‘)], where the Nambu spinor structure for a 2 x 2 lattice is simply
Y = (Y11, Y12, Y21, Yoo, wlTl, w;rz, zp;, w;rz)T and H is the corresponding Hamiltonian density matrix (also refereed as
the single particle Hamiltonian and BdG (Bogoliubov-de-Gennes) Hamiltonian). This representation illuminates the
particle-hole symmetry (PHS), which takes the form 7 H*t, = —H with 7, = 7; ® I and [ is a unity matrix with a
dimension that equals to the lattice size. Consequently, the Nambu spinor can be divided into two vectors, ¥ = (2, 9 ")

and the BdG Hamiltonian can be divided into four matrix blocks,

H=|* . (37

Next, we diagonalize the single particle Hamiltonian in order to find a transformation of the creation-annihilation
operators from the lattice site occupation basis to the energy occupation basis. A consequence of the PHS is that for

every eigenenergy € with eigenstate W, there exist a opposite eigenenergy, —e and an eigenstate 7yc; -

* s«
Ue Ue Ve Ve

(a) H't, =-H
)T = T H'1y =-H = H =—€ (38)

(b) H(ue ve)T =€ (ue Ve

where u. and ve are both vectors of dimension that equals to the lattice size. Hence, we found a relation between

Ve Ve Ue Ue

the eigenstates with opposite eigenvalues, u_ = V.. Since the BdG Hamiltonian is redundant the number of free
non-interacting fermions is half of the Hamiltonian dimensionality. This can be seen by writing explicitly the basis

transformation of the creation-annihilation operators -

= ) (M B+ ), = (A i+ T (39)

m,n mn

but, as shown above, the PHS imply that

C-‘—.e = Z (‘7?’" r‘nn + ﬁ?’nwm,n) (40)
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which leads to a relationship between the creation-annihilation operators, i.e. ci =C_e-

Now up to a constant the Hamiltonian after the diagonalization process is

H ~ % ZE: ecle. = % ; (E clec—€ CLC—e) = % Z (E clec—€ cfcz) - Z € (CZCE - %) “h)

e>0 e>0

The missing constant is just the ground state energy, i.e. H = } ..o € (che) + Eo. The cause to write the Hamiltonian
using only non-negative eigenvalues is that they are an artefact of the redundant formalism. For completeness of the

discussion, we also give the inverse transformation
_ € T _ €
n — Z um,ncf’ wm,n - Z Vm,ncE' (42)
€ €

2.5 The anti-commutation relations of the excitation operators

felelh = D7 [wmmuemagh, sl o + v B o + U o + VU ],

S

ue/ o mn,l/]m nwmn + v:’”’l m’nlpﬁa,ﬁ'd’m,n + uZ/l’l m’”d’:‘,, n"/’m,n + vZ’l’l m’”"pﬁ’l,flw:mn-":l =

s,

[

[uzl,num " {"!’m n "p:ﬁﬁ} TV m,n m " {wm n» 'lf’m ”} + um’n m . {wmn’ ¢Wlﬁ} +

B

m,n i man, mn mn, mn _
Ve U {¢m,na mn” Z [M OmnOmn + Ve Om,nOm ] =

Z [ v | = (el K pe) = (@el@-e) =0 (43)

m,n
In a similar fashion we’1l get that

{ceee} = (@l K]pe)* =0 (44)
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and also

{ } Z [‘m" mn¢mn¢~ ~+‘_’mn mn'l/)mnd’mn'*'_mn mn¢mn¢mn+_mn mn’l/)mn’wmn

m,n,
m.

|2 (b W+ TV (i} + A (s o+

Bl

‘—)znnumn{wmm,lprlmn}] Z[—mn mn6 6mn+vmn mn6 O ~] —

DUl + V] = (gelper) = Seer. (45)

m,n
Since we are dealing only with non-negative eigenenergies, the last equality always holds. A special attention should

be taken in the case that both energies are zero , i.e. € = €’. Since there is a degeneracy, one must choose such

eigenstates that obey the PHS, i.e. ¢o+ = Tx@o-.

2.6 Derivation of the p-wave superconductor many body ground state

Using the annihilation operator in the energy basis,

ce = 3 (700, + A ) (46)
m,n
we write the unnormalized many-body ground state as
lgs) o< [ Jecl) = [ T (72" ab + " hn ) 10). @7
O<e 0<e m,n

which satisfies ce|gs) = for any €’ > 0.

2.7 The Streda Formula

The expression for the total particle density is

oS
p= % = Crag — 0xy(V xa), + Gy (48)

where Cy, C; and o, are constants that depend on the structure of the system, i.e. continuum model, square lattice,

etc. Since ayg is coupled to 73, the local particle density is given by

(49)

| =

Pxt = % <\Pl,t7'3\yx,t> = % <l//;zl//m - %,ML) = <¢';;¢x,t> -
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Using Eq.(48-49) we can write a simple expression of the Hall like conductivity (also known as the Streda formula),

Oyy for the lattice model,

T
axyzj—izzﬂw";—w (50)

m,n

where the ¢ is the total flux through the whole lattice and the ground state exception value of the local particle number

is:

Vit (caca) =| Do+ D >+ 3 v u, (cqca) = 1)

€1, 0*<er 0'<eg €<0” <0~
0t<es ©<0” 0'<e <0

— € 6 € s& i —€ € T €] S€l ToaT
- Z (vm,num,n <C61 C62> + Vi,nVm,n <661 C€2> + Un,nUm,n <CE| cEz> + UnnVm,n <Ce| Ce,

0" <e
0*<e

(W nmn)

|2 , for an even ground state

s

"
Soce Vonl® + Vi s
|2

Do<e Vaal” + |u2:n|2 , for an odd ground state

where we used the operator transformation appearing in Eq.(42)and the PHS relations appearing in Eq.(38) and Eq.(40).
0+ 0- 1

Also, we note that |v |u .| whenever €’* = €

mn|

2.8 Supercurrents

We aim to calculate the supercurrents induced in the system as the magnetic field penetrates it [3, 1]. Our starting point

is the continuity equation

0rpij +(V-j)ij =0 (52)

where p;; = en;; and j are the electron density and current operators respectively. On the other side, In the Heisenberg

picture the equation of motion for the particle density operator at site i, j is given by
i
= [H.n;] . (53)
Thus, we identify the divergence of the current as
A ie
(V-i)ij = ~ 5 [H.n;;] . 54

where both the kinetic and pairing terms in the BCS Hamiltonian do not commute with the particle number operator.

The total (sum for all sites) particle number operator is expected to commute with the Hamiltonian in an isolated system,

I(gs |1/Jjn’ n®m,n|gs) is the groundstate expectation value of the electrons number. In addition, the occupation number of the Bogoliubov

quasiparticles is (gslcfc*6 |gs) = 1for € > 0 and 0 otherwise.
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otherwise source terms must be included in the continuity equation. However, one of the mean-field theory anomalies
is the absent of particle number conservation, so the pairing terms do not commute with the total particle number. This
anomaly leads to a contradiction since the total net-current is expected to be zero in an isolated superconductor. The
problem is overcome by using instead the exact many-body interaction term. For a p-wave superconductor we have

spinless fermions and interaction term takes the form

Hins = Z Viﬂbjd’}ﬂ’jd’i- (55)
ij
As shown in the calculation below, [H;,, n;;] = 0, namely the number operator and the exact interaction term commute.
Pibitbk = (Gix — )bk = St + Yt = [ Pabe] = Proi (56)
t i 1V = ah Tl o — it ot t oot t ot t
(e jwnl) = wivew! - wjwlve = -[wlofwd = (] ylwd = -vou (57)

Pl = ]t + LT bk = Pl i+ bl b + by =
il + i = mapf el = [Yglem] =0 (58)
Hence, only the kinetic part of the BCS Hamiltonian play a a role in the divergence of the current operator,
N ie
(V-)ij = ~% [Ho.ny;] - (59)

The mean-field approximation would take a role only when calculating the exception value of the operator.

Our next step is to calculate the current operator for a p-wave superconductor on a lattice.

t Y =t M+t Pr = el ) — lkj"f’;:'d’j + 1k Pr
= [tiﬂ/’jiﬁj, n| = likﬂ’:d’k _lkj'l/’]t'd’j (60)

For a square lattice Hy, the kinetic part is

Ho= ), [r;*:ZwZ,bwc,d U Paped €Yy ptbed +he (61)

a,b,c,d
where the right (up) hopping amplitude is rc'_l’j o 84,0-10p.d (uz_"s & 84,00p+1,4) and the on-site energy is e:’fl’ o« 84.c0p.d-

The commutation relation between the Hy and n; ; is
[7{ n ] _ ra,bw+ Wi b d)f ¥ +Ma,b¢1‘ i b d}f ¥
0,y ;| = i,j Pap¥ii = TapWijWab Tl ; W, ,Wij = U, pYij¥ab
a,b

. .
+ e Pl iy — el ] ap —he|. (62)
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where we subtracted the hermitian conjugate (instead of adding as in the Hamiltonian) since

i t_s . I
([h‘ﬂﬁ?%‘, nk]) = (tijd’jd’jnk - tijnkﬂ);ﬂ’j)] = [ijnk¢;":[)i - lijw;'d’ink = —[fij¢j¢i, ny |
+
= [l ] = —([fijl/fjl/ij,ﬂk]) . (63)
Hence, the divergence of the current operator is

ie

3 i+, i,j T ij+1 ij T
(V ' .])ij h (Zi,j ¢i+1,j’¢)i*j - t,'_l’ -d’i’jwi—l,j + ti,j ¢[’j+1¢i,j - t[,j_l"pi’j'l[’i,j—] - h-C) (64)

J

where t]i]l is the hopping amplitude[2]. This equation tells us that the divergence of the current at site i, j is equal to the
current going out minus the current going in. Thus, the net current through all the nodes is conserved. We processed

by taking the groundstate exception value of the current operator divergence in the same fashion as in Eq.(51),

N ie i+1,j € _e ij € —€ Lj+1_ e —€ iy € —€
(V- Dy = Y (z‘[’j Vie Vi T LoV Ve T Viga Vi T ovigVi-1) + e (65)
0*<e

Calculating the average of currents going in and out a node would give a good estimation of the current density at the

node.

2.9 Transforming from a p-wave superconductor tight-binding model of a triangular lattice

to the continuum limit

We begin with the p-wave lattice Hamiltonian,
1 +
H = Z [ - t(¢i1+2,n¢”’v” + ¢jn+l,n+l’¢)m»” + ¢jn—1,n+1¢mm) - E(ﬂ - 6t)¢;'n,n,'¢)m,n
m,n

in/3,,F F 27 /3
’ A(wjn+2,n¢j"," + eM/ ¢m+1,n+lwm,n +e ! wjn—l,nﬂwjn,” +he (66)

The sum },, ,, corresponds to the Zz 61 Z;’:’E " with the coordinates (m, n) related to (k, ) by m = 2k + mod(n, 2) and

n=1[.

Our next step is to transform the Hamiltonian into momentum space. The creation and annihilation operators can be

represented as a discrete Fourier transform

1 . .
Y = g D el (67)
Krky

where for a lattice with g, X g, atomic sites N = g, X g,. In addition, due to the periodic boundary conditions

kigia; = 2np;, p; € Zandi = x,y.
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0,0) (2,0) (4,0) (6,0) 0,0)
([ ([ [ [ [ J
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The translation operators transform as
Z 1/):“2’”1&%,, +hec. = 2 Z cos(kxa)czx’ky Ch, ky
m,n kx,ky
N kea 3kya
D W i Ymn +hee. = 2§:cm(€%+ ;7)%hhqm@ (68)
m,n kx,ky
. kya \/§kya ¥
Z ¢r‘n—1,n+1¢m’n +hc. = 2 Z cos (_T + T ckx,kyckx’k.v
m,n kx,ky
The occupation number operator transforms as
D Bt = D € ik, (69)
m,n k)mky
so the kinetic part of the Hamiltonian is
kea \/§kya kea \/gkya
—2t(cos(kxa)+cos (T+ > ) +cos(—7+ > ) —(u—61)~
kea V3kya\2 kea V3kya\2
2, (K4 Y _ka y =
t((kxa)+(2 + > )+( > + > )) u (70)

t

| R

@hmﬁu@@ﬂ—ﬂ

169



The coupling terms transform as

t : - . toot
Z¢m+2,n¢mn ! Z Sm(kxa)ckx,kyc—kx,—ky
mn

kx,ky
mZ,n w;+l,n+1¢jn,n = ik;> sin (% + @)c]ﬁx,k}, cikx,—kvv 71
mzﬂ 1/)Z1+1,n—11/)jn,n = ik;;y sin ( - k;_a + \/§2ky )cltx,kycikx,—ky
so the in interaction part of the Hamiltonian is
iA(sin(kxa) + ™3 sin (kxTa + @) + ¢ sin ( - kxTa + \/§2ky)) ~

—+i— =+

ot (5 D)5 T (5o ) - 52)) -

iA%a(kx +iky) (72)

The complete Hamiltonian density can be written as

" 3k . 3k 1
H= l - t(cos(kxa) + cos (% + \/_zya) + cos ( - % + \/_Zya)) - E(# - 6t)}7’Z

A 3k 3k

3k 3k
- % sin(kx—a + V3 ya) +sin(— % + V3 ya)}Tx (73)

2 2 2

. Chx.ky
and the Hamiltonian is just H = ‘P&H‘Pk with the Nambu spinors ‘Plt = (CIL X c_kx,_ky) and ¥ = Y )
xoky

+
€ kyky

In the continuum limit the Hamiltonian takes the standard form -

k> ;
X A (ky +ik
7{:12\1{(( Zm ~ F ( Hy))q’k (74)

2kx,ky A* (kx—iky) —;Ti +u

where the effective mass is m = ﬁ and i3aA — A.

2.10 Fermion parity switches

To understand the existence of crossing between two energy levels at zero energy appear, recall that to obtain a

Bogoliubov-de Gennes description of the superconductor we had to double the number of degrees of freedom by
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introducing holes. Hence, a pair of +E energy levels does not corresponds to two distinct quantum states, but to a
single quantum state: ¢, = c_. Since |gs) o [To<e €c|0), populating the partner state at energy E is the same as
emptying the positive energy state. In other words, at each crossing the fermion parity in the ground state of the

superconductor changes from even to odd, or vice versa. Hence these crossings are fermion parity switches.

Since the ground state fermion parity is preserved by the superconducting Hamiltonian if there are no Bogoliubov
quasiparticles crossing zero energy, the ground state fermion parity is the topological invariant of this system. We now

turn to introduce the new invariant:
Q = sign [pf(H(rx ® 1)), (75)

where T, is the first Pauli matrix, / is the identity matrix of dimension ¢ (the dimension of the Hamiltonian is 2¢).

2.11 Calculating the angular momentum of the cooper pairs

The kinetic part of the single particle Hamiltonian (in first quantization):

Ho = D 110Gl = p Y 1l (76)
Lj Lj
The position operator:
r= " rili)il. amn
i
The velocity operator:
N el L. . i
V=Y vl vy = GV = G HOLL) = =5 (= 1) (o). 78)
iJ
The eigenstates of the Hamiltonian are
We) = D Wicld),  Wie = (ile). (79)
i

The angular momentum is

(L) = (elr x Vlge) = > e e jile x vlj) = D w2 e j (ri x vi )
ij i.J
= —% 4 vre i [xilyi = y)Hij = yilxi = x)Hi ] (80)
L]

i . .
= % Z Ve, llpg’jq—{i’j (xiyj - inj) ,
i.j
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where for brevity we wrote H instead of Hy. In the case that the angular momentum is calculated with respect to

re = (x¢, yo) we have:

(Lo) = (Wel(r = 1) X VIge) = D0 e jGil(r = xe) X V1) = Y w2 e j (67 = 1) X vi )

i.j i

= —% Z WU e [(xi = xe)vi = yi)Hij = (i = ye)(xi = x;)H; | (81)
i.j

i .
=5 DU it Hj (xeyy = yix = xe(yi = yp) + ye(xi = x7) -
i

3 Lattice gauge fields

In the presence of an external magnetic field the translation operators, which form the kinetic part of the Hamiltonian,

are simply
T, = '(/}jnJrl’n"/Jm,neiH;;l‘n Ty = ¢;’n+1¢m,nei0hl’"- (82)

The phase factors are defined as

e m+1 e n+l
Opn = £/ Ax(x,n)dx Opn = £‘/ Ay (m, y)dy (33)
m n

3.1 Calculating the the flux per plaquette

The number of flux quanta per plaquette ¢,,, is related to the lattice curl of the phase factor:

(0 = AsOinn = Ay O = (6110 = O = Ot + O ) =
[ A-dl=27% [B-ds=2 &
—zﬁm = ”z/ 148 = 279mn

ce

where the phase factors are defined as 6;,, = % f;”l A -dx and 6, = s fn AL dy. Also, it is related to the

accumulated phase of a single particle state, |) = 1p; ;|0) surrounding a plaquette:

ox [ px y
TITIT Ty = T{TiTyli + 1, jye s = TTf|i+ 1,/ + 1)el(6i».i+9i+1.j) =

. (85)
T;|i,j 4 1>ei(9i)fj+9iy+l,j_0;ij+l) _ |l~,j>e"(9ffj+93;1,j‘gffj+1‘ny.j) = |i, j)ei 2 mn
3.2 The Landau gauge
Under this gauge, which is designed for a cylindrical lattice of width g, the vector potential is
A(x,y) =0,  Ay(x,y)= l%~ (86)
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where p is the flux strength, ¢ is the dimension of the lattice and ® = 27 is a flux quanta in natural units. The number
of flux per plaquette, ¢, ,, is given by
3 p p_p
¢m,n - (m + 1)_ —-m— = (87)
q q9 49

The flux through a g X ¢ lattice is 2mgp with p € Z.

3.3 The almost antisymmetric gauge

Under this gauge, which is designed for a toroidal lattice of size g X g+ 1, the vector potential is

pQoy pDox
Ay(x,y) = —.

Ax > = 5
) (g+ Da qa

(88)

where p is the flux strength and ®y = 27 is a flux quanta in natural units. Under this gauge dyA, is slightly greater
than 0y A, and their contributions to the magnetic field are counter-oriented. The number of flux per plaquette, ¢, , is

given by

P P _Pp P p
+n == = )
g+1 g+1 q q+1 qlg+1)

bmn=m+ 12 —mP —(n+1) (89)
q q

The flux through the entire lattice is 27p with p € Z.

3.4 The construction of the Landau Gauge and the Almost Antisymmetric Gauge

In order to have an integer number of flux quanta flowing homogeneously through the entire lattice, we must have a

constant rational number of flux quanta per plaquette. These requirements determines the form of the phase factors -

17

p 14 ) p
rot(0; ;) = 2n¢; j = 271; = AXHij - Ayejfj = Gl’fj = 27r?y, Gij = ZHFx (90)

with s = 5" X s being a divisor of the lattice size and p = p”’ X s’ — s” X p’.

If we add a requirement for periodic boundary conditions over a rectangular lattice with g, X ¢, dimensions than

’ 1

_ _Pp Yy gy _pr
92%—0%—2”11:»11—?%, qu’j—eogj—%rm:m—yqx {m,n} €2 (29

so s” equals to g, or one of its divisors. The minimal flux per plaquette allowed by the gauge is determined by s. As the
values of s and s” are larger the minimal value of the flux per plaquette is smaller. Thus, we choose s’ = g, (which
forces n = p’), likewise s” = g.. By setting p’ = 0 and g, = gy, the Landau gauge is obtained. Also, setting p’ = p”’
and g, = gx + 1 would yield the almost anti-symmetric gauge. In both of the gauges there is a single parameter, p”’

that controls the flux strength.
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3.5 The Singular Gauge

In order to add "point flux" of a half flux quanta we can use the vector potential
D
A(r—ry) = 4—0VArg(r —19) 92)
v

where r( denotes the "point flux" position on the lattice.

3.6 Magnetic unit cells and the degeneracy in the energy levels of Hofstadter Hamiltonian

The Hofstadter Hamiltonian describes a tight binding model for spinless electrons on a square lattice, in the presence

of an external magnetic field. It can simplify be written as
H=Tc+Ty+h.c, (93)

where T, and 7y are the translation operators. Calculating the commutation relation of the translation operators, when

we act on a single-particle state (m, n), |Wmn) = ¢Z,,!n|0> yields

¥ O oyt
TTylij) = ZTXQ/)jn,nHw"k”el " 4;510)
mn
0 O [0?’.0?.
- Z¢L+1,n¢m,n¢Zj+1|0>el niettmn = ¢j+1,_i+1|0>e( N 'H])
m,n

Tywa/i,,i) = Z Tyi/fi,+1,n¢m,n€ie’x’"”¢lj|0) = (94)
m,n

v
(e[fj +9;-+1,,-)

E ! P ¢T |0)€0"X~f e‘)myv" = TIJT [0)e
m,n+1 TR 4] i+1,j+1
m,n

X .-67

(63+65,1-05,-6%, ) i
ij i,j+1 i,J i+l,j :TyTxe

(AX o7, ‘Ay(’ix.j)

=TT, = TyTe = TyTxeizﬂvﬁi,f

The translation operators don’t commute with each other and nor with the Hamiltonian. However, we can define

magnetic translation operators that do commute with the Hamiltonian as follows:

~ PX ~ ivY
Lo =4 mne i Ty =4y by e me, ©3)
In order to determine the phase y;;,, we demand that a) the magnetic translation operator obey the commutation

relation [TX, TX] =0andb) [Ty, Tx] = 0. Starting from the first requirement:
= ¥ T i x 4 + (x> +0%
TxTxll»[/i,j> =T Z w,InJrl’nwm,n'dJile)e’van = Z ¢m+1,n¢m,nwi+1,j|0>el(Xl"’+ ’ )
m,n m,n

=], (el )

i+2,j (96)
~ (0 . +x* .
TeTlbi) = ¥, 00 070
= [Tx Tx] =, 2 Y nei(g'):'“»"JrX')ﬁ"") (l - ei()('):’“v"+H’{‘*"_H'J'(”1v"_/\/;’*")
’ m+2,n >
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Thus, we deduce that the constrain which maintains the commutativity of Ty and T is
AxX;fj = Axgzj
Continuing with the second requirement:
T i) = T D ) e mny] |0)e™mn = " 4t by pip] j0ye! (O
xIyij) = Tx moan+l Py g = m+l,n P e
m,n m,n
_ ,¢JT |0>ei(9ffj+1+/ﬂ'y,j)
T TitLj+1
=, =, + T i Xﬁ,’,’n+6f.
BTy =Ty 3 0 mnt] 100 = 3t [0y )
m,n m,n

= |o>e"((’ff+)(f+n,j)

i+1,7+1

7 AN GRS AR oy | I (R S
= [T Ty] = ¢;+1,n+1¢m,n (1 —e ( ) o il )) e ( -+l )
From here we deduce that the second constrain which assures the commutativity of 7, and 7 is
y _ X
Acx;; = Ay0;;
Using the relation 27r¢;; = Ax6‘iyj - Ay Hj‘l the two conditions can be represented as

Ax)(fj =Ax0 Av9¥-+2ﬂ'¢i’j.

X
i YYLLJ

In the case of constant flux per plaquette the solution is
ij = QZJ + 27Tj¢i,j

Similarly,

[T 1] = 0= Ay}, = A6 (75, T2] =0 = Avx]; = 65,

X
ij?
and the solution of the conditions for )(iy j is
y _ gy ;
X,"j = 9,‘31' - 27U¢i,j

Also, the condition for the magnetic translation operators T, and Ty to commute, likewise eq.(94), is

AxXZj -y = AXHij - A0 =2n¢;; = 2np.

€0

(98)

99)

(100)

(101)

(102)

(103)

(104)

with p € Z. Thus, except for the case that ¢; ; is an integer they do not commute. This exception is not a great help

since it means that the flux through the whole lattice is a flux quanta multiplied by its size. On the other hand, if we

require the flux number per plaquette to be rational,

p
bij = " {p.steZ
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than

[T;x, Tysv] =0, where sy X 5, = s (106)

If the momentum states, |k) are also eigenstates of the magnetic translation operators, T3* and Tysy than they define a

magnetic cell, in which the Hamiltonian is periodic.

Under the Landau gauge, for a square lattice (¢ X ¢) the phases of the magnetic translation operators are
Xx = 65+ 2mj¢ = 2,y = 6, —2mig = 2ni (’—’ - ’—’) -0 (107)
q ! 9 49
Thus, the magnetic translation operators satisfy
TY|k) = e 91k),  Tyk) = ™ [k). (108)

The first is obtained by noticing that for a single particle - 7¢ |y) = w;w’ndyﬂqn |y) with |¢) = wj,,,n |0) and representing
the operator in momentum space. The second is a straight forward representation in k space. These operators, as
shown above, also commute,

74.7,] = 0. (109)
The Bloch conditions, [H,7y] = 0and [H,T,] = 0 imply that H|k) = E(k)|k). From here we can prove that the

Landau-level problem on a lattice has a q-fold degeneracy at different wavevectors -
Ty il ky) = e OT Ty lky, ky) = € ®727OT |k k) = Tilkay ky) = kx, ky = 276) (110)

The eigenstates |k, ky — 27¢) and |ky, ky) have identical energy, since 7, commutes with the Hamiltonian. Because

the flux number, ¢ = § is rational, the spectrum is g-fold degenerate, corresponding to the application of Ty g times.

4 The geometric phases of the p-wave superconductor ground state as two

vortices are exchanged

In this section we derive a formula for the Berry phase of a spinless chiral p-wave superconductor ground state due to
the simultaneous exchange of two vortex defects. This formula is suited for the case that the underling structure of the

p-wave superconductor is a two-dimensional tight-binding square lattice with Dirichlet boundary conditions.

4.1 Derivation of the Gauge-Independent Berry Phase formula

We introduce an instantaneous orthonormal eigenstates |n(R)) of the Hamiltonian 4 (R) at each point R:

HR)|n(R)) = E,(R)[n(R)) (111
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The time evolution of the system is given by
HROW(®) = ihd, (1)), where [y(1)) = " n(R(1))). (112)
Substituting the time dependent wave function yields the differential equation
E,(R(1)In(R(1))) = =10, 6(1)|n(R(2))) + ihd; |n(R(2))) (113)

which has a solution
t

w0 =i [ aooamron -5 [ a Ewo). (114)

geometric phase dynamical phase

We are interested only in the geometric phase, known also as the Berry phase. The integration over ¢ can be regarded

as some parametrization of R so we rewrite it as a contour integral,
i .
yo=i [t GREONVRIREDR =i § dREE|Taln(R). (115)
t; C

Further more we can write the Berry phase asy,, = fc dR-A,(R), where A, (R) = i(n(R)| Vg|n(R)) = —F(n(R)|Vr|n(R))

is defined as the Berry vector potential. The last equality is based on the fact that

(mR)nR) =1 = (n(R)|Vr[n(R)) + (n(R)|Vg|n(R))" =0

n n*
= 2Rm+iBm-3m)=0 = Rm=0
= R((n(R)|VrIn(R))) =0

The time independent wave function, |n(R)) is defined uniquely up to a global phase which can be gauged. Under the
gauge transformation [n(R)) — ¢¥®|n(R)) , where ¢(R) must maintain the smoothness and the single-valueness of
the wave function.?2 Consequentially, the Berry vector potential A, (R) is transformed as A, (R) — A,(R) — VrZ(R).
The Berry phase will defer by Ay, = — fc dRVR{(R) = {(R(#;)) = {(R(tr)) = 2rm with m being an integer. The last
equality is a result of R(#;) and R(#f) referring to the same point in the parameter space while {(R) is allowed to be

multivalued as long as the wave function is kept single-valued.

In order to describe the simultaneous exchange of two vortices, we need no more than a three-dimensional parameter

space. For a 3D closed path C, the Berry phase is a gauge-invariant quantity as can easily seen by applying the Stokes

H’ In") In)’
2The U(1) transformation changes the Hamiltonian as (U HU)U ™' |n)) = EWU ™" |n)) with U = ¢ ¢®),
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theorem:

Yn = —Sffsds-(VRX (n(R)|VR|n(R))) = —5//SdSifijkaj((n(R)IVRIn(R)>)k

——

(n|0k |n) (116)

-3 //S dS - (Vrnl X [Vn)

The last equality lies on the fact that the eigenstates are single-valued and smooth functions of the parameter space, R,

SO
Eijkaj ((n(R)|0k|n(R))) = €ijk <6jn(R)|8kn(R)) + €ijk <n(R)|5j3kn(R)> = €ijk <3jn(R)|5kn(R)>~ ar7

In a numerical diagonalization of the Hamiltonian to obtain the eigenstates at each R, the diagonalization procedure
will output states with wildly different phase factors, thereby preventing the taking of derivatives. We must gauge-
smoothen first, but this is a nontrivial procedure. However, we overcome this difficulty by rewriting the formula using
only projectors and gradients of them, which are essentially gauge independent. We start with inserting a complete set
of eigenstates ), |m)(m| = 1 between the two states gradient,
€jk{0jn|0kn) = €;ji (Ojnln) (n|Okn) + Z €k (0jnlm){m|dxn)) (118)
~—— T m#n

Imaginary Imaginary

The first term term is real, giving no contribution to the imaginary part that is used to compute the Berry phase. Hence,

we have

y=9 //SdSi Z €1k (Djn|m) (m|dn). (119)

m#n

Our next step is to move the derivatives from the eigenstates to the Hamiltonian, that can always be represented using

projectors and as so is gauge independent. Noticing that

En(m|Vgn) = (m|Vr(H|n)) = (m|(VrH)|n) + (m|H|Vrn) (120)
we can write the identity
(nl Vi = LT (121)
and a similarly
VrH
(Vrnlm) = (m|Vgn)" = % (122)

Finally the single particle gauge independent Berry phase formula is

VeH VeH
Yu=-3 //S as. " LoV (L;”:_Xé:)'z wHn) (123)

m#n
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TION 22NN ANIND TTIPNN YOMP YN NPENIN I NOPN NNIPO NURD TYS
N POND NI DIDPPIAN NON MNIIYPNI MOIINNN NN OT DY U9 WN
2N (N) :O210N DD TN DI NX N NIVN NRIIPY JNOY NPNIVPINRN MNONN
MN2YN DY TPINI TPNPANP DO TTIPD SNDNN 201 ITO VNI DV MR 55
VYNON HPIN DN NN N IRV NV DY DY () ATIN X DMV »2) DY
NOWNA NN PN NTY DY NP DM TPRORID YIND WD IO IOIN
MNAY MO TV VIV DY TN’ DDON TN DVYNNIVN DX .DPIMNN NV NN DY
NON PTIN 1T PONPD SY= PN XNDPN MNIIWYN PID INNNN WP~ TN INNVIN
2N MYOM DY NPIN NYAUN NINY DNYP DIANND MNON 2D NS DX .p + ip

2N MM IPLIPYNNIAY P M VY NMIONN TP VPON DY D) TON INIIND)

MTY NN, 70PN PORYY MY ,DPONRPI DY) ,DPNNNV SY-1551 :HNM M1

2NNV PID IPHIN MN  NDIPPIAN MN2WN ,ONNDJVS TN DDOUPIN



PPN

5N MN2WYN .MVYITI DYVIPND MYTH MOWY ,DXOMP DIAVNN PHYN MIINN DY
DON MOMINI MHBPN NN OT 5y MOYIIND DI TINTITY PID 10N ,OPONPD DY
DNIVAND R NN IPHIAN XD MAONN NPPODIVLD D MPIYNIY (MITPN - MOWID IN)
212 TPOPPVON NIWNN 199 TIDNN 22NN AN NI NPIVNIN NPYNNIDII0 Y3
MN29YN2 PIVN DNKIVIGND DIYNN INDYD D THRYN DOVMP DIAVNND N»ID WHYD
MN2YN NIY MO NPINKY TPDOPAN MPNNRN NN NNV YOMP YN Yo
NN NINYNY TPOIYTTN DY TPNNNIDIN0 DYNNVYN MO .p + ip NON DY-I5na
LD29YNN NPT DY NPPDON NN NODD PNRNN N9 NNTPPONN VD
N2 PNRNN D MO OYNTINNI TINIOPONN MPIND MIPENNIOY DN ND MO
exp(i7/8) ,TPODIDIN WIAN MIN NI PYXIN 2PIN OHY - ONMD V'S MIIN VY
DODNNY DODIDVNINTND NP W N MND NNF DY .MN2YN M Nadnn nya

JPONN ONMD-YJVSN IDNRD DONYM DINYL Yol

NN OY192 YNINND DD NNIPN NAYNN DN MOIWYN SV DWW DND 90N v
VYYD 1) 1ID2) NYNID INND NNV NORYY NS NN IPLIMDIN MOIWYHNN
TPNNMN PORYI NN POAYY MDAYN 2D 92Y2 NN MOV MNAWYNHN NYNN2
RO AMN MAbNN NPPODVVL JD WY DRI DX N NN IIPH MOIOND PN
NYNNN NN INNIY NNOVINN NYSN T DY YY) 927D NN TN MN2YNHN SV
YN NUN VYN TPDHYN NOARYY NMND XIDON POIND MNS DY 1POPNPN
PN PINM [ NXIDON PODIDN DY HOMPN IYNND MIXNIYN IR DN .OPNNNV
1 0D ORI NOINN NN PPN NI IUNRD NI IVMININ NN NN D2AVNND

T8N Oy NORON NMN PPON9
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