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Introduction

This article appears in the September 18, 2017,
issue of New York Magazine.

Figure 1. Mosaic (i.e., mitotic) aneuploidy may be compatible with healthy birth.

Preimplantation genetic testing for aneuploidy (PGT-A) has been devised

as an approach to improve IVF outcomes by prioritizing chromosomally

normal (i.e. euploid) embryos for transfer based on genetic analysis of

embryo biopsies.

Extra or missing chromosomes (aneuploidy) is the leading cause of

human pregnancy loss and congenital disorders.

While meiotic aneuploidies are unambiguously harmful, mitotic errors,

which generate mosaic embryos possessing both normal and aneuploid

cells, are common and potentially compatible with healthy live birth.

The ability to distinguish meiotic- and mitotic-origin aneuploidies during

PGT-A may thus prove valuable for enhancing IVF outcomes.
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Figure 2. Meiotic and mitotic errors contribute to human aneuploidy

Aneuploidies of maternal meiotic origin increase in frequency with age.

Aneuploidies of mitotic origin are prevalent and constant across all ages.

The current PGT-A comprise low-coverage whole-genome sequencing of

DNA extracted from 5-10 trophoblast cells of day-5 embryos.

Motivation

To date, few methods have explicitly attempted to distinguish the

patterns of transmission of individual parental homologous

chromosomes, which may inform the classification of meiotic and

mitotic aneuploidies.

The few exceptions require genomic data from parents, as well as

embryos, and/or are not designed for low-coverage sequencing data—

the current standard for PGT-A.

Distinguishing viable forms of mosaic aneuploidy from harmful meiotic

aneuploidy could recover healthy embryos from IVF cycles otherwise

deemed unsuccessful.

Signatures of meiotic and mitotic trisomy

Notably, trisomies of meiotic origin are expected to produce a genetic signa-

ture characterized by the presence of three unique parental haplotypes (two

from a single parent) and distinct from the mitotic trisomy signature of only

two unique haplotypes chromosome-wide.
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Figure 3. Signatures of various forms of chromosome abnormality with respect to their

composition of identical and distinct parental homologs. Normal gametogenesis produces

two genetically distinct copies of each chromosome—one copy from each parent—that

comprise mosaics of two homologs possessed by each parent. Meiotic-origin trisomies

may be diagnosed by the presence of one or more tracts with three distinct parental

homologs (i.e., transmission of both parental homologs [BPH] from a given parent). In

contrast, mitotic-origin trisomies are expected to exhibit only two genetically distinct

parental homologs chromosome-wide (i.e. duplication of a single parental homolog [SPH]

from a given parent). Triploidy and haploidy will mirror patterns observed for individual

meiotic trisomies and monosomies, respectively, but across all 23 chromosome pairs—a

pattern that confounds standard coverage-based analysis of PGT-A data.

Classification approach

Inspired by the related challenge of imputation, our method overcomes the

sparse nature of the data by leveraging haplotype structure from a popula-

tion reference panel.
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Figure 4. A statistical approach to leverage aneuploidy signatures to classify meiotic and

mitotic trisomies using low-coverage sequencing-based data.
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Figure 5. Demonstration of the detection of meiotic crossovers from low-coverage PGT-A

data. Trisomies were simulated with varying locations of meiotic crossovers, as depicted in

the upper diagrams and varying depths of coverage (0.01×, 0.05×, and 0.1×). Confidence

intervals correspond to a z-score of one (confidence level of 68.3%). The size of the

genomic windows varies with the coverage, while the size of the bins is kept constant.

true positive false positive

true negativefalse negative

H0     H0 H1     H0

H1     H1H0     H1
H0     Ambiguous H1     Ambiguous

true positive false positive

H1     H1 H0     H1

true negativefalse negative

H0     H0H1     H0
H1

     Ambiguous H0     Ambiguous

0.0

0.2

0.4

0.6

0.8

1.0
0.01× 0.05×

m
atched

0.1×

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

random

0.0 0.2 0.4 0.6 0.8 1.0

Balanced False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Ba
lan

ce
d 

Tru
e P

os
iti

ve
 R

at
e

EUR EAS SAS AMR AFR

(a) (b) (c)

Figure 6. Balanced ROC curves for BPH vs. SPH with matched and random reference

panels of non-admixed embryos, varying depths of coverage.

Application to PGT-A data

We applied our method to low-coverage PGT-A data from >8,000 human

embryos provided by the Zouves Fertility Center.
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Figure 7. Ancestry inference from low-coverage PGT-A data informs the selection of

matched reference panels. PCAs were defined based on analysis of 1000 Genomes

reference samples.
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Figure 8. Classification of trisomies of meiotic and mitotic origin (A), their association with

maternal age, and their chromosome-specific propensities.

Revealing abnormalities in genome-wide ploidy
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Figure 9. Representative putative diploid (A.), triploidy (B.), and haploid (C.) samples.

Mapping meiotic crossovers
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Figure 10. Mapping of meiotic crossovers on putative trisomic chromosomes based on

inferred switches between tracts of BPH and SPH trisomy.

Conclusions

Aneuploidies arising during meiosis and mitosis have distinct impacts on

development and possess unique haplotype signatures.

We distinguish these signatures from low-coverage sequencing.

Potential to improve IVF outcomes and diagnosis of pregnancy loss.
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