HOW VORTEX BOUND STATES AFFECT THE HALL CONDUCTIVITY

OF A CHIRAL p-WAVE SUPERCONDUCTOR

Daniel Ariad (daniel@ariad.org), Yshai Avishai and Eytan Grosfeld

Exign University of We represent a method to diagonalize a superconducting Hamiltonian in the presence of a vortex lattice, that employs only smooth gauge transformations. It renders the Hamiltonian to be periodic and enables the treatment of vortices of finite radii. The charge response c_{xy} , which is proportional to the Hall conductivity, is calculated using the Streda formula. The results reveal a quantized contribution to c_{xy} due to the formation of bound states, proportional to the system's Chern number.

THE PHYSICAL SYSTEM

• Our setup consists vortex superlattice imposed on top of the electronic lattice of a chiral $p_x \pm i p_y$ superconductor. [1]

Figure 1: A magnetic field penetrating through vortices is depicted by blue field lines. Red field lines represent screening currents. τ_1 and τ_2 span the magnetic unit cell. r_1 and

ALMOST ANTI-SYMMETRIC GAUGE

where $\mathbf{A}, \Theta, m_e, \rho, \rho_0$ and c_{xy} are the vector potential, superconducting phase, electron mass, charge density, equilibrium density and charge response.

HAMILTONIAN AND ORDER PARAMETER

• The $p_x \pm i p_y$ BdG Hamiltonian in the tight-binding approximation (taking $\hbar = c = e = 1$) consists of three term, $\hat{H} = \hat{T} + \hat{\Delta} - \mu \hat{N}$ with

- \hat{T} , $\hat{\Delta}$ and $\mu \hat{N}$ are the hopping, coupling and on-site energy terms.
- $\; \psi^\dagger_{\bm r}$ \mathbf{r} and ψ_r are fermionic creation and annihilation operators.
- t, Δ_0 and μ are the hopping amplitude, order-parameter magnitude and chemical potential.

 $\text{Vector potential } \left| \right. \qquad \mathbf{A}(\boldsymbol{r}) = 2p\Phi_0$ $\int y$ $q+1$ $,\frac{x}{a}$ \overline{q} \setminus $\mathbf{A}(\bm{r})=2p\Phi_0$ $\left(\frac{-y}{-y}\right)$ $\frac{-y}{q+1},0$ \setminus Total flux $|\Phi = \Phi_0 p, \quad 1 \le p \le q(q+1) | \Phi = q \Phi_0 p, \quad 1 \le p \le q+1$

- $r, s = \pm \uparrow \downarrow$ and $a_i = a_i \hat{\tau}_i$ with $i = 1, 2$ are the lattice vector, spin projection and primitive vectors.
- $\hbox{---} \ \hbox{The factor}\ e^{\pm i {\rm Arg}(\bm{a})} \hbox{ with } {\rm Arg}(\bm{r})\equiv {\rm Arg}(x{+}iy) \hbox{ is due to the } p{\pm}ip \hbox{ symmetry}.$ of the gap and the superconducting gap is plotted above.

$$
\mathbf{J} = \frac{\rho_0}{2m_e} \left(\nabla \Theta - 2\mathbf{A} \right) - \frac{1}{4m_e} \left(\hat{z} \times \nabla \right) \left[\rho + c_{xy} \nabla \times (\nabla \Theta - 2\mathbf{A}) \right], \tag{1}
$$

 $- e^{i \int_{\boldsymbol{r}}^{\boldsymbol{r}+ \boldsymbol{a}_i}$ $\int_{r}^{r} e^{i\theta} \mathbf{A} \cdot d\theta$ is the Peierls phase factor and $e^{i\Theta(r)} e^{i\theta(r)}$ \dot{i} 2 $\int_{\mathbf{r}}^{\mathbf{r}+\mathbf{a}}$ $\int_{\mathbf{r}}^{\mathbf{r}+\boldsymbol{a}} \nabla \Theta \cdot \mathrm{d} \boldsymbol{\ell}$ is a phase factor which encodes the superconductor response.

VORTEX SUPERLATTICE

• $\sum_{i=1}^{N_v} s_i \theta(\mathbf{r} - \mathbf{r}_i)$, where N_V is the number of vortices per magnetic unit cell, In the presence of of a vortex lattice, the superconducting phase is $\Theta(\bm{r}) =$ $s_i = \pm 1$ is the winding number of the *i*th vortex and

- We seek a gauge that renders the superconducting phase periodic only at the atomic lattice sites, $\mathbf{A} \rightarrow \mathbf{A} + \frac{1}{2}$ $\frac{1}{2}\nabla_{\bm{r}} \chi, \Delta \rightarrow \Delta e^{i \chi}, \psi_{\bm{r} s} \rightarrow e^{i \chi/2} \psi_{\bm{r} s}.$
- If $\mathbf{J} \propto \frac{1}{2}$ $\frac{1}{2}\nabla_{\bm{r}}\Theta - \mathbf{A}$ is doubly periodic than $\int_{\bm{r}}^{\bm{r}+\bm{\tau}_i} \mathbf{J} \cdot \mathbf{d}\ell$ is also. Therefore, we $\text{can choose } \chi(\bm{r}) \text{ so that, } \Theta'(\bm{r}) = \Theta(\bm{r}) + \chi(\bm{r}) \text{ and } \int_{\bm{r}}^{\bm{r}+\bm{\tau}_i}$ $(A + \frac{1}{2})$ $\frac{1}{2} \nabla_{\bm r} \chi \big) \cdot {\bf d} \bm \ell$ are simultaneously periodic (mod 2π).
- We found such a gauge for a magnetic unit cells with $q \times q + 1$ electronic sites, $\chi(\bm{r}) = \sum_{i=1}^{N_{\bm{v}}} s_i \phi(\overline{\bm{r}, \bm{r}_i}) \, \, \text{with}$

$$
\hat{T} = -t \sum_{\mathbf{r},s,i} e^{i \int_{\mathbf{r}}^{\mathbf{r}+\mathbf{a}_i} \mathbf{A} \cdot d\boldsymbol{\ell}} \psi^{\dagger}_{\mathbf{r}+\mathbf{a}_i,s} \psi_{\mathbf{r},s} + \text{h.c.},
$$
\n
$$
\Delta_{p \pm ip}
$$
\n
$$
\hat{T} = -t \sum_{\mathbf{r},s,i} e^{i \int_{\mathbf{r}}^{\mathbf{r}+\mathbf{a}_i} \mathbf{A} \cdot d\boldsymbol{\ell}} \psi^{\dagger}_{\mathbf{r}+\mathbf{a}_i,s} \psi_{\mathbf{r},s} + \text{h.c.},
$$
\n
$$
\Delta_{p \pm ip}(\mathbf{r}, \mathbf{a}) = \Delta_0(\mathbf{r}) e^{\pm i \text{Arg}(\mathbf{a})} e^{i \Theta(\mathbf{r})} e^{\frac{i}{2} \int_{\mathbf{r}}^{\mathbf{r}+\mathbf{a}} \nabla \Theta \cdot d\boldsymbol{\ell}}.
$$
\n(2)

• The superconducting phase is accompanied by a vector potential that correspond to a homogeneous magnetic field and fulfill

Figure 2: (Top) Quasi-particle bands as function of the coherence length, for a pinned vortex lattice in a p-wave superconductor. The magnetic unit cell contains 10×11 atomic sites and the vortices are placed along its diagonal with maximal separation. We take $t = |\Delta|$ = $\mu = 1.$ (Bottom) The electronic band structure of a p-wave superconductor with the coherence length set to $\xi = 2$.

$$
\theta(\boldsymbol{r}-\boldsymbol{r}_i)=\lim_{M\to\infty}\left[\sum_{m,n=-2M}^{2M}\text{Arg}(\boldsymbol{r}-\boldsymbol{r}_i-m\boldsymbol{\tau}_1-n\boldsymbol{\tau}_2)\mod 2\pi\right].\qquad(3)
$$

• We calculated it analytically and found that

$$
\theta(z) = \text{Im} \left[\log \left(i \vartheta_1 \left(\frac{z}{\tau_2}, -\frac{\tau_1}{\tau_2} \right) \right) - \frac{2iz^2}{\tau_1 \tau_2} \text{arctg} \left(\frac{i\tau_1}{\tau_2} \right) \right],\tag{4}
$$

revealing that it is generally non-periodic on the magnetic unit cell.

SMOOTH GAUGE

• Stokes' theorem implies that on a compact geometry only vortex-antivortex

CHARGE RESPONSE

- c_{xy} is manifested in the effective action by a partial Chern-Simons term $S_{pCS} =$ $\pm c_{xy} \int d\boldsymbol{r} dt \, a_t (\nabla \times \boldsymbol{a})_z \text{ with } a_{\mu} = A_{\mu} - \partial_{\mu} \Theta/2, \, \mu \in \{t, x, y\} . [2]$
- Thus, in analogy to the Streda formula we have $c_{xy}(r) = \pm \left. \partial \rho(r)/\partial B_z \right|_{B_z=0}$ with $\rho(\boldsymbol{r}) = \delta S_{\text{eff}}/\delta a_t$ and $B_z = (\nabla \times \boldsymbol{a})_z$. When taking the derivative in the Streda formula, we simultaneously flip the magnetic field and all the vorticities.

pairs are allowed. We demonstrate it below for a sphere.

Figure 3: (Left) c_{xy} vs. μ for different ξ . (Right) We crudely separate the magnetic unit cell average of c_{xy} into a contribution from the vortices and a contribution from the bulk. (Bottom) c_{xy} vs. μ and Δ . The magnetic unit cell consists of 40×41 atomic sites, $t = |\Delta| = 1$ and $\xi = 2.5$. In addition, the magnetic unit cell contains 40×41 sites and two vortices that are pinned on its diagonal, partitioning it in a ratio of 1 : 2 : 1.

REFERENCES

D. Ariad, Y. Avishai, and E. Grosfeld. How vortex bound states affect the hall conductivity of a chiral $p \pm ip$ superconductor. $arXiv:1603.00840$, 2018. [2] D. Ariad, E. Grosfeld, and B. Seradjeh. Effective theory of vortices in twodimensional spinless chiral p-wave superfluids. Phys. Rev. B, $92(3):035136, 2015$.

$$
\mathbf{J}(\boldsymbol{r}) = \mathbf{J}(\boldsymbol{r} + \boldsymbol{\tau}_i) \Rightarrow \mathbf{A}(\boldsymbol{r} + \boldsymbol{\tau}_i) = \mathbf{A}(\boldsymbol{r}) + \frac{1}{2}\boldsymbol{\nabla}\left[\Theta'(\boldsymbol{r} + \boldsymbol{\tau}_i) - \Theta'(\boldsymbol{r})\right] \qquad (6)
$$

• We dub it the almost anti-symmetric gauge (AAG):

$$
\mathbf{A} = \frac{2\Phi_0 N}{a_1 a_2 \sin^2(\alpha_1 - \alpha_2)} \left[\frac{(\mathbf{r} \times \hat{\boldsymbol{\tau}}_1) \times \hat{\boldsymbol{\tau}}_2}{q+1} + \frac{(\mathbf{r} \times \hat{\boldsymbol{\tau}}_2) \times \hat{\boldsymbol{\tau}}_1}{q} \right]
$$
(7)

• The AAG vs. the Landau gauge:

 r_2 are positions of the vortices.

• The supercurrents in system are described by

 $e^{i\pi}$

Quasi-particle bands

• We use the following Bloch wave to obtain the electronic band structure:

$$
\varphi_{\boldsymbol{k},s}(\boldsymbol{r}) = \frac{1}{\sqrt{N_1 N_2}} \sum_{\boldsymbol{R}} e^{i \boldsymbol{k} \cdot \boldsymbol{R}} |\boldsymbol{R} + \boldsymbol{r}, s\rangle
$$

$$
\boldsymbol{R} \equiv \boldsymbol{R}_{m_1,m_2} = m_1 \boldsymbol{\tau}_1 + m_2 \boldsymbol{\tau}_2
$$
\n
$$
\boldsymbol{k} \equiv \boldsymbol{k}_{n_1,n_2} = \frac{2\pi n_1}{N_1 |\boldsymbol{\tau}_1|} \hat{\boldsymbol{\tau}}_1 + \frac{2\pi n_2}{N_2 |\boldsymbol{\tau}_2|} \hat{\boldsymbol{\tau}}_2
$$

